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Tibor	Pál,	PhD	candidateTibor	PálPhD	candidateTibor	is	a	Ph.D.	candidate	in	Statistics	at	the	University	of	Salerno,	focusing	on	time	series	models	applied	in	macroeconomics	and	finance.	His	work	is	greatly	motivated	by	the	perception	that	risk,	uncertainty,	and	unexpected	events	are	inherent	driving	features	of	everyone's	lives;	thus,	attitude
towards	these	aspects	is	essential	to	one's	life	and	economics.	Hence,	his	primary	interest	is	developing	novel	statistical	approaches	to	capture	unordinary	episodes	in	economic	activity	and	irregularities	in	the	financial	market	driven	by	risk-related	behaviors.	Translating	these	elements	into	his	life	makes	him	keen	to	discover	and	live	in	unusual
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our	editorial	policy	and	Jack	Bowater140	people	find	this	calculator	helpfulTable	of	contentsUse	the	t-statistic	calculator	(t-value	calculator	or	t	test	statistic	calculator)	to	compute	the	t-value	of	a	given	dataset	using	its	sample	mean,	population	mean,	standard	deviation	and	sample	size.	Read	further	where	we	answer	to	the	following	questions:	What
is	the	t-statistic?	How	do	I	calculate	t-statistic?	What	is	the	difference	between	T-score	vs.	Z-score?	If	you	are	also	interested	in	F-test,	check	our	F-statistic	calculator.In	statistics,	the	t-statistic,	or	t-value,	is	a	measure	that	describes	the	relationship	between	a	sample	and	its	population.	The	t-statistic	is	central	to	the	Student's	t-test,	which	is	a	test	for
evaluating	hypotheses	about	the	population	mean.More	precisely,	the	t-statistic	is	used	to	determine	whether	to	support	or	reject	the	null	hypothesis.	It	is	used	in	conjunction	with	the	p-value,	or	critical	value,	which	indicates	the	probability	that	your	results	could	have	happened	by	chance.	It	is	comparable	to	the	z-statistic,	with	the	difference	being
that	the	t-statistic	is	applied	for	small	sample	sizes	or	unknown	population	standard	deviations.You	need	to	use	the	following	t-statistic	formula	to	calculate	the	t-value:t=xˉ−μs/nt	=	\frac{\bar	x	-	\mu}{s/\sqrt	n}t=s/n​xˉ−μ​Where:	xˉ\bar	xxˉ	-	Sample	mean;	μ\muμ	-	Population	mean;	nnn	-	Sample	size;	and	sss	-	Standard	deviation	of	the	sample.	To
compute	the	t-statistic,	you	need	to	provide	the	following	four	variables:	Sample	mean,	xˉ\bar	xxˉ;	Population	mean,	μ\muμ;	Sample	size,	nnn;	and	Sample	standard	deviation,	sss.	Alternatively,	you	can	use	the	tool	in	reverse;	for	example,	you	can	recover	the	sample	mean	from	the	t-statistic,	provided	you	input	all	other	values.Let's	say	you	are	a
basketball	player	and	your	game	score	is	15	(x̄)	on	average	over	36	(n)	games,	with	a	standard	deviation	of	6	(s).	You	know	that	an	average	basketball	player	scores	10	(μ).	Should	your	performance	be	considered	above	average?	Or	are	your	scores	due	to	luck?	Finding	the	t-statistic	and	the	probability	value	will	give	you	some	insight.	More
specifically,	finding	the	t-statistic	with	the	p-value	will	let	you	know	if	there	is	a	significant	difference	between	your	mean	and	the	population	mean	of	everyone	else.	Applying	the	previously	stated	t-statistic	formula,	you	can	obtain	the	following	equation.	t=15−106/36=5t	=	\dfrac{15	-	10}{6	/	\sqrt{36}}	=	5t=6/36​15−10​=5	Now,	we	know	that	the	t-
statistic	equals	5,	but	what	does	it	mean?	To	gain	more	knowledge,	you	should	compare	this	value	with	a	particular	threshold	(or	significance	level),	let's	say	5	percent	(α	=	5%)	of	a	Student-t	distribution.	Since	the	sample	size	is	relatively	large	(n	>	30)	we	can	use	the	critical	value	of	the	standard	normal	distribution.	The	critical	value	of	a	5%
threshold	in	a	standard	normal	distribution	is	1.645.	Since	our	t-statistic	is	above	the	critical	value,	we	can	say	that	you	play	better	than	the	average.	In	fact,	we	have	just	performed	a	Student's	t-test!	Visit	our	dedicated	t-test	calculator	to	learn	more.Both	t-score	and	Z-score	aim	to	make	comparisons	and	decide	on	the	dissimilarity	between	the
sample	and	the	population	mean.	The	main	difference	between	T-score	vs.	Z-score	comes	from	the	knowledge	about	the	population	standard	deviation.	For	Z-score,	we	assume	it	is	given,	while	for	T-score	you	need	to	estimate	it.	In	addition,	T-score	can	be	applied	when	you	have	a	small	sample	size	(less	than	30	elements).To	calculate	t-statistic:
Determine	the	sample	mean	(x̄,	x	bar),	which	is	the	arithmetic	mean	of	your	data	set.	Find	the	population	mean	(μ,	mu).	Compute	the	sample	standard	deviation	(s)	by	taking	the	square	root	of	the	variance.	To	find	the	variance,	if	it	is	not	given,	take	each	value	in	the	sample,	subtract	it	from	the	sample	mean,	square	the	difference,	sum	them	up,	and
divide	by	the	sample	size	minus	one.	Calculate	the	t-statistic	as	(x̄	-	μ)	/	(s	/	√n),	where	n	denotes	the	sample	size.	The	student	t-test	was	devised	by	Gosset,	who	developed	the	connected	statistical	theory	in	1908.	At	the	time,	Gosset	worked	at	the	Guinness	Brewery	in	Dublin,	which	had	an	internal	policy	of	forbidding	employees	from	publishing	to
preclude	potential	loss	of	trade	secrets.	Gosset,	however,	found	a	loophole:	he	was	writing	under	the	pseudonym	of	‘Student’.	As	a	consequence,	the	statistical	student	t	distribution	became	known	as	student	t	rather	than	Gosset's	t.	So,	next	time	you	enjoying	a	pint	of	Guinness	with	your	friend,	you	have	a	compelling	story	to	share.Sample	standard
deviation	(s)Did	we	solve	your	problem	today?Check	out	28	similar	inference,	regression,	and	statistical	tests	calculators		Probability	distribution	This	article	is	about	the	mathematics	of	Student's	t-distribution.	For	its	uses	in	statistics,	see	Student's	t-test.	Student's	t	Probability	density	function	Cumulative	distribution	functionParameters	ν	>	0
{\displaystyle	u	>0}	degrees	of	freedom	(real,	almost	always	a	positive	integer)Support	x	∈	(	−	∞	,	∞	)	{\displaystyle	x\in	(-\infty	,\infty	)}	PDF	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	(	1	+	x	2	ν	)	−	ν	+	1	2	{\displaystyle	{\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}{2}}\right)}}\left(1+{\frac	{x^{2}}{u	}}\right)^{-{\frac
{u	+1}{2}}}}	CDF	1	2	+	x	Γ	(	ν	+	1	2	)	×	2	F	1	(	1	2	,	ν	+	1	2	;	3	2	;	−	x	2	ν	)	π	ν	Γ	(	ν	2	)	,	{\displaystyle	{\begin{aligned}&{\frac	{1}{2}}+x\Gamma	\left({\frac	{u	+1}{2}}\right)\times	\\&\quad	{\frac	{{}_{2}F_{1}\!\left({\frac	{1}{2}},{\frac	{u	+1}{2}};{\frac	{3}{2}};-{\frac	{x^{2}}{u	}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}
{2}}\right)}},\end{aligned}}}	where	2	F	1	{\displaystyle	{}_{2}F_{1}}	is	the	hypergeometric	functionMean	0	{\displaystyle	0}	for	ν	>	1	,	{\displaystyle	u	>1,}	otherwise	undefinedMedian	0	{\displaystyle	0}	Mode	0	{\displaystyle	0}	Variance	ν	ν	−	2	{\displaystyle	{\frac	{u	}{u	-2}}}	for	ν	>	2	,	{\displaystyle	u	>2,}	∞	{\displaystyle	\infty	}	for	1	<
ν	≤	2	,	{\displaystyle	1	3			,	{\displaystyle	\	u	>3\	,}	otherwise	undefinedExcess	kurtosis	6	ν	−	4	{\displaystyle	{\frac	{6}{u	-4}}}	for	ν	>	4	,	{\displaystyle	u	>4,}	∞	{\displaystyle	\infty	}	for	2	<	ν	≤	4	,	{\displaystyle	2	0	{\displaystyle	u	>0}	,	where	K	ν	{\displaystyle	K_{u	}}	is	the	modified	Bessel	function	of	the	second	kind[1]Expected	shortfall	μ	+	s
(	(	ν	+	[	T	−	1	(	1	−	p	)	]	2	)	×	τ	(	T	−	1	(	1	−	p	)	)	(	ν	−	1	)	(	1	−	p	)	)	,	{\displaystyle	\mu	+s\left({\frac	{{\big	(}u	+[T^{-1}(1-p)]^{2}{\big	)}\times	\tau	{\big	(}T^{-1}(1-p){\big	)}}{(u	-1)(1-p)}}\right),}	where	T	−	1	{\displaystyle	T^{-1}}	is	the	inverse	standardized	Student	t	CDF,	and	τ	{\displaystyle	\tau	}	is	the	standardized	Student	t	PDF.[2]	In
probability	theory	and	statistics,	Student's	t	distribution	(or	simply	the	t	distribution)	t	ν	{\displaystyle	t_{u	}}	is	a	continuous	probability	distribution	that	generalizes	the	standard	normal	distribution.	Like	the	latter,	it	is	symmetric	around	zero	and	bell-shaped.	However,	t	ν	{\displaystyle	t_{u	}}	has	heavier	tails,	and	the	amount	of	probability	mass
in	the	tails	is	controlled	by	the	parameter	ν	{\displaystyle	u	}	.	For	ν	=	1	{\displaystyle	u	=1}	the	Student's	t	distribution	t	ν	{\displaystyle	t_{u	}}	becomes	the	standard	Cauchy	distribution,	which	has	very	"fat"	tails;	whereas	for	ν	→	∞	{\displaystyle	u	\to	\infty	}	it	becomes	the	standard	normal	distribution	N	(	0	,	1	)	,	{\displaystyle	{\mathcal	{N}}
(0,1),}	which	has	very	"thin"	tails.	The	name	"Student"	is	a	pseudonym	used	by	William	Sealy	Gosset	in	his	scientific	paper	publications	during	his	work	at	the	Guinness	Brewery	in	Dublin,	Ireland.	The	Student's	t	distribution	plays	a	role	in	a	number	of	widely	used	statistical	analyses,	including	Student's	t-test	for	assessing	the	statistical	significance	of
the	difference	between	two	sample	means,	the	construction	of	confidence	intervals	for	the	difference	between	two	population	means,	and	in	linear	regression	analysis.	In	the	form	of	the	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	,	τ	2	,	ν	)	{\displaystyle	\operatorname	{\ell	st}	(\mu	,\tau	^{2},u	)}	it	generalizes	the	normal	distribution	and	also	arises	in	the
Bayesian	analysis	of	data	from	a	normal	family	as	a	compound	distribution	when	marginalizing	over	the	variance	parameter.	Student's	t	distribution	has	the	probability	density	function	(PDF)	given	by	f	(	t	)	=	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	(	1	+	t	2	ν	)	−	(	ν	+	1	)	/	2	,	{\displaystyle	f(t)={\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\Gamma
\left({\frac	{u	}{2}}\right)}}\left(1+{\frac	{t^{2}}{u	}}\right)^{-(u	+1)/2},}	where	ν	{\displaystyle	u	}	is	the	number	of	degrees	of	freedom,	and	Γ	{\displaystyle	\Gamma	}	is	the	gamma	function.	This	may	also	be	written	as	f	(	t	)	=	1	ν	B	(	1	2	,	ν	2	)	(	1	+	t	2	ν	)	−	(	ν	+	1	)	/	2	,	{\displaystyle	f(t)={\frac	{1}{{\sqrt	{u	}}\,\mathrm	{B}	\left({\frac	{1}
{2}},{\frac	{u	}{2}}\right)}}\left(1+{\frac	{t^{2}}{u	}}\right)^{-(u	+1)/2},}	where	B	{\displaystyle	\mathrm	{B}	}	is	the	beta	function.	In	particular	for	integer	valued	degrees	of	freedom	ν	{\displaystyle	u	}	we	have:	For	ν	>	1	{\displaystyle	u	>1}	and	even,	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	=	1	2	ν	⋅	(	ν	−	1	)	⋅	(	ν	−	3	)	⋯	5	⋅	3	(	ν	−	2	)	⋅	(	ν	−	4	)	⋯	4	⋅	2	.
{\displaystyle	{\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}{2}}\right)}}={\frac	{1}{2{\sqrt	{u	}}}}\cdot	{\frac	{(u	-1)\cdot	(u	-3)\cdots	5\cdot	3}{(u	-2)\cdot	(u	-4)\cdots	4\cdot	2}}.}	For	ν	>	1	{\displaystyle	u	>1}	and	odd,	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	=	1	π	ν	⋅	(	ν	−	1	)	⋅	(	ν	−	3	)	⋯	4	⋅	2	(	ν	−	2	)	⋅	(	ν	−	4	)	⋯
5	⋅	3	.	{\displaystyle	{\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}{2}}\right)}}={\frac	{1}{\pi	{\sqrt	{u	}}}}\cdot	{\frac	{(u	-1)\cdot	(u	-3)\cdots	4\cdot	2}{(u	-2)\cdot	(u	-4)\cdots	5\cdot	3}}.}	The	probability	density	function	is	symmetric,	and	its	overall	shape	resembles	the	bell	shape	of	a	normally
distributed	variable	with	mean	0	and	variance	1,	except	that	it	is	a	bit	lower	and	wider.	As	the	number	of	degrees	of	freedom	grows,	the	t	distribution	approaches	the	normal	distribution	with	mean	0	and	variance	1.	For	this	reason	ν	{\displaystyle	{u	}}	is	also	known	as	the	normality	parameter.[3]	The	following	images	show	the	density	of	the
t	distribution	for	increasing	values	of	ν	.	{\displaystyle	u	.}	The	normal	distribution	is	shown	as	a	blue	line	for	comparison.	Note	that	the	t	distribution	(red	line)	becomes	closer	to	the	normal	distribution	as	ν	{\displaystyle	u	}	increases.	Density	of	the	t	distribution	(red)	for	1,	2,	3,	5,	10,	and	30	degrees	of	freedom	compared	to	the	standard	normal
distribution	(blue).Previous	plots	shown	in	green.1	degree	of	freedom2	degrees	of	freedom3	degrees	of	freedom5	degrees	of	freedom10	degrees	of	freedom30	degrees	of	freedom	The	cumulative	distribution	function	(CDF)	can	be	written	in	terms	of	I,	the	regularized	incomplete	beta	function.	For	t	>	0	,	F	(	t	)	=	∫	−	∞	t			f	(	u	)			d	⁡	u			=			1	−	1	2	I	x	(	t	)
(			ν			2	,					1			2	)			,	{\displaystyle	F(t)=\int	_{-\infty	}^{t}\	f(u)\	\operatorname	{d}	u~=~1-{\frac	{1}{2}}I_{x(t)}\!\left({\frac	{\	u	\	}{2}},\	{\frac	{\	1\	}{2}}\right)\	,}	where	x	(	t	)	=	ν			t	2	+	ν					.	{\displaystyle	x(t)={\frac	{u	}{\	t^{2}+u	\	}}~.}	Other	values	would	be	obtained	by	symmetry.	An	alternative	formula,	valid	for			t	2	<	ν			,
{\displaystyle	\	t^{2}	1			,	{\displaystyle	u	>1\	,}	the	raw	moments	of	the	t	distribution	are	E	⁡	{			T	k			}	=	{	0	k		odd		,	0	<	k	<	ν			,	1			π					Γ	(			ν			2	)			[			Γ	(			k	+	1			2	)			Γ	(			ν	−	k			2	)			ν			k			2			]	k		even		,	0	<	k	<	ν			.	{\displaystyle	\operatorname	{\mathbb	{E}	}	\left\{\	T^{k}\	\right\}={\begin{cases}\quad	0&k{\text{	odd	}},\quad	04~.}
Student's	t-distribution	with	ν	{\displaystyle	u	}	degrees	of	freedom	can	be	defined	as	the	distribution	of	the	random	variable	T	with[5][6]	T	=	Z	V	/	ν	=	Z	ν	V	,	{\displaystyle	T={\frac	{Z}{\sqrt	{V/u	}}}=Z{\sqrt	{\frac	{u	}{V}}},}	where	Z	is	a	standard	normal	with	expected	value	0	and	variance	1;	V	has	a	chi-squared	distribution	(χ2-distribution)
with	ν	{\displaystyle	u	}	degrees	of	freedom;	Z	and	V	are	independent;	A	different	distribution	is	defined	as	that	of	the	random	variable	defined,	for	a	given	constant	μ,	by	(	Z	+	μ	)	ν	V	.	{\displaystyle	(Z+\mu	){\sqrt	{\frac	{u	}{V}}}.}	This	random	variable	has	a	noncentral	t-distribution	with	noncentrality	parameter	μ.	This	distribution	is	important	in
studies	of	the	power	of	Student's	t-test.	Suppose	X1,	...,	Xn	are	independent	realizations	of	the	normally-distributed,	random	variable	X,	which	has	an	expected	value	μ	and	variance	σ2.	Let	X	¯	n	=	1	n	(	X	1	+	⋯	+	X	n	)	{\displaystyle	{\overline	{X}}_{n}={\frac	{1}{n}}(X_{1}+\cdots	+X_{n})}	be	the	sample	mean,	and	s	2	=	1	n	−	1	∑	i	=	1	n	(	X	i	−	X
¯	n	)	2	{\displaystyle	s^{2}={\frac	{1}{n-1}}\sum	_{i=1}^{n}\left(X_{i}-{\overline	{X}}_{n}\right)^{2}}	be	an	unbiased	estimate	of	the	variance	from	the	sample.	It	can	be	shown	that	the	random	variable	V	=	(	n	−	1	)	s	2	σ	2	{\displaystyle	V=(n-1){\frac	{s^{2}}{\sigma	^{2}}}}	has	a	chi-squared	distribution	with	ν	=	n	−	1	{\displaystyle	u	=n-
1}	degrees	of	freedom	(by	Cochran's	theorem).[7]	It	is	readily	shown	that	the	quantity	Z	=	(	X	¯	n	−	μ	)	n	σ	{\displaystyle	Z=\left({\overline	{X}}_{n}-\mu	\right){\frac	{\sqrt	{n}}{\sigma	}}}	is	normally	distributed	with	mean	0	and	variance	1,	since	the	sample	mean	X	¯	n	{\displaystyle	{\overline	{X}}_{n}}	is	normally	distributed	with	mean	μ	and
variance	σ2/n.	Moreover,	it	is	possible	to	show	that	these	two	random	variables	(the	normally	distributed	one	Z	and	the	chi-squared-distributed	one	V)	are	independent.	Consequently[clarification	needed]	the	pivotal	quantity	T	≡	Z	V	/	ν	=	(	X	¯	n	−	μ	)	n	s	,	{\textstyle	T\equiv	{\frac	{Z}{\sqrt	{V/u	}}}=\left({\overline	{X}}_{n}-\mu	\right){\frac	{\sqrt
{n}}{s}},}	which	differs	from	Z	in	that	the	exact	standard	deviation	σ	is	replaced	by	the	sample	standard	error	s,	has	a	Student's	t-distribution	as	defined	above.	Notice	that	the	unknown	population	variance	σ2	does	not	appear	in	T,	since	it	was	in	both	the	numerator	and	the	denominator,	so	it	canceled.	Gosset	intuitively	obtained	the	probability
density	function	stated	above,	with	ν	{\displaystyle	u	}	equal	to	n	−	1,	and	Fisher	proved	it	in	1925.[8]	The	distribution	of	the	test	statistic	T	depends	on	ν	{\displaystyle	u	}	,	but	not	μ	or	σ;	the	lack	of	dependence	on	μ	and	σ	is	what	makes	the	t-distribution	important	in	both	theory	and	practice.	The	t	distribution	arises	as	the	sampling	distribution	of
the	t	statistic.	Below	the	one-sample	t	statistic	is	discussed,	for	the	corresponding	two-sample	t	statistic	see	Student's	t-test.	Let			x	1	,	…	,	x	n	∼	N	(	μ	,	σ	2	)			{\displaystyle	\	x_{1},\ldots	,x_{n}\sim	{\mathcal	{N}}(\mu	,\sigma	^{2})\	}	be	independent	and	identically	distributed	samples	from	a	normal	distribution	with	mean	μ	{\displaystyle	\mu	}	and
variance			σ	2			.	{\displaystyle	\	\sigma	^{2}~.}	The	sample	mean	and	unbiased	sample	variance	are	given	by:	x	¯	=			x	1	+	⋯	+	x	n			n			,	s	2	=	1			n	−	1					∑	i	=	1	n	(	x	i	−	x	¯	)	2			.	{\displaystyle	{\begin{aligned}{\bar	{x}}&={\frac	{\	x_{1}+\cdots	+x_{n}\	}{n}}\	,\\[5pt]s^{2}&={\frac	{1}{\	n-1\	}}\	\sum	_{i=1}^{n}(x_{i}-{\bar
{x}})^{2}~.\end{aligned}}}	The	resulting	(one	sample)	t	statistic	is	given	by	t	=	x	¯	−	μ			s	/	n					∼	t	n	−	1			.	{\displaystyle	t={\frac	{{\bar	{x}}-\mu	}{\	s/{\sqrt	{n\	}}\	}}\sim	t_{n-1}~.}	and	is	distributed	according	to	a	Student's	t	distribution	with			n	−	1			{\displaystyle	\	n-1\	}	degrees	of	freedom.	Thus	for	inference	purposes	the	t	statistic	is	a
useful	"pivotal	quantity"	in	the	case	when	the	mean	and	variance	(	μ	,	σ	2	)	{\displaystyle	(\mu	,\sigma	^{2})}	are	unknown	population	parameters,	in	the	sense	that	the	t	statistic	has	then	a	probability	distribution	that	depends	on	neither	μ	{\displaystyle	\mu	}	nor			σ	2			.	{\displaystyle	\	\sigma	^{2}~.}	Instead	of	the	unbiased	estimate			s	2		
{\displaystyle	\	s^{2}\	}	we	may	also	use	the	maximum	likelihood	estimate			s	M	L	2	=			1			n			∑	i	=	1	n	(	x	i	−	x	¯	)	2			{\displaystyle	\	s_{\mathsf	{ML}}^{2}={\frac	{\	1\	}{n}}\	\sum	_{i=1}^{n}(x_{i}-{\bar	{x}})^{2}\	}	yielding	the	statistic			t	M	L	=	x	¯	−	μ	s	M	L	2	/	n			=	n	n	−	1					t			.	{\displaystyle	\	t_{\mathsf	{ML}}={\frac	{{\bar	{x}}-\mu	}
{\sqrt	{s_{\mathsf	{ML}}^{2}/n\	}}}={\sqrt	{{\frac	{n}{n-1}}\	}}\	t~.}	This	is	distributed	according	to	the	location-scale	t	distribution:	t	M	L	∼	ℓ	s	t	⁡	(	0	,			τ	2	=	n	/	(	n	−	1	)	,			n	−	1	)			.	{\displaystyle	t_{\mathsf	{ML}}\sim	\operatorname	{\ell	st}	(0,\	\tau	^{2}=n/(n-1),\	n-1)~.}	The	location-scale	t	distribution	results	from	compounding	a	Gaussian
distribution	(normal	distribution)	with	mean			μ			{\displaystyle	\	\mu	\	}	and	unknown	variance,	with	an	inverse	gamma	distribution	placed	over	the	variance	with	parameters			a	=			ν			2			{\displaystyle	\	a={\frac	{\	u	\	}{2}}\	}	and	b	=			ν			τ	2			2			.	{\displaystyle	b={\frac	{\	u	\	\tau	^{2}\	}{2}}~.}	In	other	words,	the	random	variable	X	is	assumed	to
have	a	Gaussian	distribution	with	an	unknown	variance	distributed	as	inverse	gamma,	and	then	the	variance	is	marginalized	out	(integrated	out).	Equivalently,	this	distribution	results	from	compounding	a	Gaussian	distribution	with	a	scaled-inverse-chi-squared	distribution	with	parameters	ν	{\displaystyle	u	}	and			τ	2			.	{\displaystyle	\	\tau	^{2}~.}
The	scaled-inverse-chi-squared	distribution	is	exactly	the	same	distribution	as	the	inverse	gamma	distribution,	but	with	a	different	parameterization,	i.e.			ν	=	2			a	,	τ	2	=			b			a			.	{\displaystyle	\	u	=2\	a,\;{\tau	}^{2}={\frac	{\	b\	}{a}}~.}	The	reason	for	the	usefulness	of	this	characterization	is	that	in	Bayesian	statistics	the	inverse	gamma
distribution	is	the	conjugate	prior	distribution	of	the	variance	of	a	Gaussian	distribution.	As	a	result,	the	location-scale	t	distribution	arises	naturally	in	many	Bayesian	inference	problems.[9]	Student's	t	distribution	is	the	maximum	entropy	probability	distribution	for	a	random	variate	X	having	a	certain	value	of			E	⁡	{			ln	⁡	(	ν	+	X	2	)			}			{\displaystyle	\
\operatorname	{\mathbb	{E}	}	\left\{\	\ln(u	+X^{2})\	\right\}\	}	.[10][clarification	needed][better	source	needed]	This	follows	immediately	from	the	observation	that	the	pdf	can	be	written	in	exponential	family	form	with	ν	+	X	2	{\displaystyle	u	+X^{2}}	as	sufficient	statistic.	The	function	A(t	|	ν)	is	the	integral	of	Student's	probability	density
function,	f(t)	between		-t	and	t,	for	t	≥	0	.	It	thus	gives	the	probability	that	a	value	of	t	less	than	that	calculated	from	observed	data	would	occur	by	chance.	Therefore,	the	function	A(t	|	ν)	can	be	used	when	testing	whether	the	difference	between	the	means	of	two	sets	of	data	is	statistically	significant,	by	calculating	the	corresponding	value	of	t	and	the
probability	of	its	occurrence	if	the	two	sets	of	data	were	drawn	from	the	same	population.	This	is	used	in	a	variety	of	situations,	particularly	in	t	tests.	For	the	statistic	t,	with	ν	degrees	of	freedom,	A(t	|	ν)	is	the	probability	that	t	would	be	less	than	the	observed	value	if	the	two	means	were	the	same	(provided	that	the	smaller	mean	is	subtracted	from
the	larger,	so	that	t	≥	0	).	It	can	be	easily	calculated	from	the	cumulative	distribution	function	Fν(t)	of	the	t	distribution:	A	(	t	∣	ν	)	=	F	ν	(	t	)	−	F	ν	(	−	t	)	=	1	−	I	ν	ν	+	t	2	(	ν	2	,	1	2	)	,	{\displaystyle	A(t\mid	u	)=F_{u	}(t)-F_{u	}(-t)=1-I_{\frac	{u	}{u	+t^{2}}}\!\left({\frac	{u	}{2}},{\frac	{1}{2}}\right),}	where	Ix(a,	b)	is	the	regularized	incomplete
beta	function.	For	statistical	hypothesis	testing	this	function	is	used	to	construct	the	p-value.	The	noncentral	t	distribution	generalizes	the	t	distribution	to	include	a	noncentrality	parameter.	Unlike	the	nonstandardized	t	distributions,	the	noncentral	distributions	are	not	symmetric	(the	median	is	not	the	same	as	the	mode).	The	discrete	Student's
t	distribution	is	defined	by	its	probability	mass	function	at	r	being	proportional	to:[11]	∏	j	=	1	k	1	(	r	+	j	+	a	)	2	+	b	2	r	=	…	,	−	1	,	0	,	1	,	…			.	{\displaystyle	\prod	_{j=1}^{k}{\frac	{1}{(r+j+a)^{2}+b^{2}}}\quad	\quad	r=\ldots	,-1,0,1,\ldots	~.}	Here	a,	b,	and	k	are	parameters.	This	distribution	arises	from	the	construction	of	a	system	of	discrete
distributions	similar	to	that	of	the	Pearson	distributions	for	continuous	distributions.[12]	One	can	generate	Student	A(t	|	ν)	samples	by	taking	the	ratio	of	variables	from	the	normal	distribution	and	the	square-root	of	the	χ²	distribution.	If	we	use	instead	of	the	normal	distribution,	e.g.,	the	Irwin–Hall	distribution,	we	obtain	over-all	a	symmetric
4	parameter	distribution,	which	includes	the	normal,	the	uniform,	the	triangular,	the	Student	t	and	the	Cauchy	distribution.	This	is	also	more	flexible	than	some	other	symmetric	generalizations	of	the	normal	distribution.	t	distribution	is	an	instance	of	ratio	distributions.	The	square	of	a	random	variable	distributed	tn	is	distributed	as	Snedecor's	F
distribution	F1,n.	Student's	t	distribution	generalizes	to	the	three	parameter	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			{\displaystyle	\operatorname	{\ell	st}	(\mu	,\	\tau	^{2},\	u	)\	}	by	introducing	a	location	parameter			μ			{\displaystyle	\	\mu	\	}	and	a	scale	parameter			τ			.	{\displaystyle	\	\tau	~.}	With			T	∼	t	ν			{\displaystyle	\	T\sim	t_{u	}\	}
and	location-scale	family	transformation			X	=	μ	+	τ			T			{\displaystyle	\	X=\mu	+\tau	\	T\	}	we	get			X	∼	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			.	{\displaystyle	\	X\sim	\operatorname	{\ell	st}	(\mu	,\	\tau	^{2},\	u	)~.}	The	resulting	distribution	is	also	called	the	non-standardized	Student's	t	distribution.	The	location-scale	t	distribution	has	a	density	defined	by:[13]	p	(	x	∣
ν	,	μ	,	τ	)	=	Γ	(	ν	+	1	2	)	Γ	(	ν	2	)	τ	π	ν	(	1	+	1	ν	(	x	−	μ	τ	)	2	)	−	(	ν	+	1	)	/	2	{\displaystyle	p(x\mid	u	,\mu	,\tau	)={\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{\Gamma	\left({\frac	{u	}{2}}\right)\tau	{\sqrt	{\pi	u	}}}}\left(1+{\frac	{1}{u	}}\left({\frac	{x-\mu	}{\tau	}}\right)^{2}\right)^{-(u	+1)/2}}	Equivalently,	the	density	can	be	written	in	terms
of	τ	2	{\displaystyle	\tau	^{2}}	:			p	(	x	∣	ν	,	μ	,	τ	2	)	=	Γ	(	ν	+	1	2	)	Γ	(	ν	2	)	π	ν	τ	2	(	1	+	1	ν	(	x	−	μ	)	2	τ	2	)	−	(	ν	+	1	)	/	2	{\displaystyle	\	p(x\mid	u	,\mu	,\tau	^{2})={\frac	{\Gamma	({\frac	{u	+1}{2}})}{\Gamma	\left({\frac	{u	}{2}}\right){\sqrt	{\pi	u	\tau	^{2}}}}}\left(1+{\frac	{1}{u	}}{\frac	{(x-\mu	)^{2}}{\tau	^{2}}}\right)^{-(u	+1)/2}}
Other	properties	of	this	version	of	the	distribution	are:[13]	E	⁡	{			X			}	=	μ		for		ν	>	1			,	var	⁡	{			X			}	=	τ	2	ν	ν	−	2		for		ν	>	2			,	mode	⁡	{			X			}	=	μ			.	{\displaystyle	{\begin{aligned}\operatorname	{\mathbb	{E}	}	\{\	X\	\}&=\mu	&{\text{	for	}}u	>1\	,\\\operatorname	{var}	\{\	X\	\}&=\tau	^{2}{\frac	{u	}{u	-2}}&{\text{	for	}}u	>2\	,\\\operatorname
{mode}	\{\	X\	\}&=\mu	~.\end{aligned}}}	If			X			{\displaystyle	\	X\	}	follows	a	location-scale	t	distribution			X	∼	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			{\displaystyle	\	X\sim	\operatorname	{\ell	st}	\left(\mu	,\	\tau	^{2},\	u	\right)\	}	then	for			ν	→	∞			{\displaystyle	\	u	\rightarrow	\infty	\	}			X			{\displaystyle	\	X\	}	is	normally	distributed	X	∼	N	(	μ	,	τ	2	)	{\displaystyle
X\sim	\mathrm	{N}	\left(\mu	,\tau	^{2}\right)}	with	mean	μ	{\displaystyle	\mu	}	and	variance			τ	2			.	{\displaystyle	\	\tau	^{2}~.}	The	location-scale	t	distribution			ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	=	1	)			{\displaystyle	\	\operatorname	{\ell	st}	\left(\mu	,\	\tau	^{2},\	u	=1\right)\	}	with	degree	of	freedom	ν	=	1	{\displaystyle	u	=1}	is	equivalent	to	the	Cauchy
distribution	C	a	u	(	μ	,	τ	)			.	{\displaystyle	\mathrm	{Cau}	\left(\mu	,\tau	\right)~.}	The	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	=	0	,			τ	2	=	1	,			ν	)			{\displaystyle	\operatorname	{\ell	st}	\left(\mu	=0,\	\tau	^{2}=1,\	u	\right)\	}	with	μ	=	0	{\displaystyle	\mu	=0}	and			τ	2	=	1			{\displaystyle	\	\tau	^{2}=1\	}	reduces	to	the	Student's	t	distribution			t	ν			.
{\displaystyle	\	t_{u	}~.}	Student's	t	distribution	arises	in	a	variety	of	statistical	estimation	problems	where	the	goal	is	to	estimate	an	unknown	parameter,	such	as	a	mean	value,	in	a	setting	where	the	data	are	observed	with	additive	errors.	If	(as	in	nearly	all	practical	statistical	work)	the	population	standard	deviation	of	these	errors	is	unknown	and
has	to	be	estimated	from	the	data,	the	t	distribution	is	often	used	to	account	for	the	extra	uncertainty	that	results	from	this	estimation.	In	most	such	problems,	if	the	standard	deviation	of	the	errors	were	known,	a	normal	distribution	would	be	used	instead	of	the	t	distribution.	Confidence	intervals	and	hypothesis	tests	are	two	statistical	procedures	in
which	the	quantiles	of	the	sampling	distribution	of	a	particular	statistic	(e.g.	the	standard	score)	are	required.	In	any	situation	where	this	statistic	is	a	linear	function	of	the	data,	divided	by	the	usual	estimate	of	the	standard	deviation,	the	resulting	quantity	can	be	rescaled	and	centered	to	follow	Student's	t	distribution.	Statistical	analyses	involving
means,	weighted	means,	and	regression	coefficients	all	lead	to	statistics	having	this	form.	Quite	often,	textbook	problems	will	treat	the	population	standard	deviation	as	if	it	were	known	and	thereby	avoid	the	need	to	use	the	Student's	t	distribution.	These	problems	are	generally	of	two	kinds:	(1)	those	in	which	the	sample	size	is	so	large	that	one	may
treat	a	data-based	estimate	of	the	variance	as	if	it	were	certain,	and	(2)	those	that	illustrate	mathematical	reasoning,	in	which	the	problem	of	estimating	the	standard	deviation	is	temporarily	ignored	because	that	is	not	the	point	that	the	author	or	instructor	is	then	explaining.	A	number	of	statistics	can	be	shown	to	have	t	distributions	for	samples	of
moderate	size	under	null	hypotheses	that	are	of	interest,	so	that	the	t	distribution	forms	the	basis	for	significance	tests.	For	example,	the	distribution	of	Spearman's	rank	correlation	coefficient	ρ,	in	the	null	case	(zero	correlation)	is	well	approximated	by	the	t	distribution	for	sample	sizes	above	about	20.[citation	needed]	Suppose	the	number	A	is	so
chosen	that			P	⁡	{			−	A	<	T	<	A			}	=	0.9			,	{\displaystyle	\	\operatorname	{\mathbb	{P}	}	\left\{\	{-A}2,}	∞	{\displaystyle	\infty	}	for	1	<	ν	≤	2	,	{\displaystyle	1	3			,	{\displaystyle	\	u	>3\	,}	otherwise	undefinedExcess	kurtosis	6	ν	−	4	{\displaystyle	{\frac	{6}{u	-4}}}	for	ν	>	4	,	{\displaystyle	u	>4,}	∞	{\displaystyle	\infty	}	for	2	<	ν	≤	4	,
{\displaystyle	2	0	{\displaystyle	u	>0}	,	where	K	ν	{\displaystyle	K_{u	}}	is	the	modified	Bessel	function	of	the	second	kind[1]Expected	shortfall	μ	+	s	(	(	ν	+	[	T	−	1	(	1	−	p	)	]	2	)	×	τ	(	T	−	1	(	1	−	p	)	)	(	ν	−	1	)	(	1	−	p	)	)	,	{\displaystyle	\mu	+s\left({\frac	{{\big	(}u	+[T^{-1}(1-p)]^{2}{\big	)}\times	\tau	{\big	(}T^{-1}(1-p){\big	)}}{(u	-1)(1-
p)}}\right),}	where	T	−	1	{\displaystyle	T^{-1}}	is	the	inverse	standardized	Student	t	CDF,	and	τ	{\displaystyle	\tau	}	is	the	standardized	Student	t	PDF.[2]	In	probability	theory	and	statistics,	Student's	t	distribution	(or	simply	the	t	distribution)	t	ν	{\displaystyle	t_{u	}}	is	a	continuous	probability	distribution	that	generalizes	the	standard	normal
distribution.	Like	the	latter,	it	is	symmetric	around	zero	and	bell-shaped.	However,	t	ν	{\displaystyle	t_{u	}}	has	heavier	tails,	and	the	amount	of	probability	mass	in	the	tails	is	controlled	by	the	parameter	ν	{\displaystyle	u	}	.	For	ν	=	1	{\displaystyle	u	=1}	the	Student's	t	distribution	t	ν	{\displaystyle	t_{u	}}	becomes	the	standard	Cauchy
distribution,	which	has	very	"fat"	tails;	whereas	for	ν	→	∞	{\displaystyle	u	\to	\infty	}	it	becomes	the	standard	normal	distribution	N	(	0	,	1	)	,	{\displaystyle	{\mathcal	{N}}(0,1),}	which	has	very	"thin"	tails.	The	name	"Student"	is	a	pseudonym	used	by	William	Sealy	Gosset	in	his	scientific	paper	publications	during	his	work	at	the	Guinness	Brewery	in
Dublin,	Ireland.	The	Student's	t	distribution	plays	a	role	in	a	number	of	widely	used	statistical	analyses,	including	Student's	t-test	for	assessing	the	statistical	significance	of	the	difference	between	two	sample	means,	the	construction	of	confidence	intervals	for	the	difference	between	two	population	means,	and	in	linear	regression	analysis.	In	the	form
of	the	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	,	τ	2	,	ν	)	{\displaystyle	\operatorname	{\ell	st}	(\mu	,\tau	^{2},u	)}	it	generalizes	the	normal	distribution	and	also	arises	in	the	Bayesian	analysis	of	data	from	a	normal	family	as	a	compound	distribution	when	marginalizing	over	the	variance	parameter.	Student's	t	distribution	has	the	probability	density
function	(PDF)	given	by	f	(	t	)	=	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	(	1	+	t	2	ν	)	−	(	ν	+	1	)	/	2	,	{\displaystyle	f(t)={\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\Gamma	\left({\frac	{u	}{2}}\right)}}\left(1+{\frac	{t^{2}}{u	}}\right)^{-(u	+1)/2},}	where	ν	{\displaystyle	u	}	is	the	number	of	degrees	of	freedom,	and	Γ	{\displaystyle	\Gamma	}
is	the	gamma	function.	This	may	also	be	written	as	f	(	t	)	=	1	ν	B	(	1	2	,	ν	2	)	(	1	+	t	2	ν	)	−	(	ν	+	1	)	/	2	,	{\displaystyle	f(t)={\frac	{1}{{\sqrt	{u	}}\,\mathrm	{B}	\left({\frac	{1}{2}},{\frac	{u	}{2}}\right)}}\left(1+{\frac	{t^{2}}{u	}}\right)^{-(u	+1)/2},}	where	B	{\displaystyle	\mathrm	{B}	}	is	the	beta	function.	In	particular	for	integer	valued
degrees	of	freedom	ν	{\displaystyle	u	}	we	have:	For	ν	>	1	{\displaystyle	u	>1}	and	even,	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	=	1	2	ν	⋅	(	ν	−	1	)	⋅	(	ν	−	3	)	⋯	5	⋅	3	(	ν	−	2	)	⋅	(	ν	−	4	)	⋯	4	⋅	2	.	{\displaystyle	{\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}{2}}\right)}}={\frac	{1}{2{\sqrt	{u	}}}}\cdot	{\frac	{(u	-1)\cdot	(u
-3)\cdots	5\cdot	3}{(u	-2)\cdot	(u	-4)\cdots	4\cdot	2}}.}	For	ν	>	1	{\displaystyle	u	>1}	and	odd,	Γ	(	ν	+	1	2	)	π	ν	Γ	(	ν	2	)	=	1	π	ν	⋅	(	ν	−	1	)	⋅	(	ν	−	3	)	⋯	4	⋅	2	(	ν	−	2	)	⋅	(	ν	−	4	)	⋯	5	⋅	3	.	{\displaystyle	{\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{{\sqrt	{\pi	u	}}\,\Gamma	\left({\frac	{u	}{2}}\right)}}={\frac	{1}{\pi	{\sqrt	{u	}}}}\cdot	{\frac	{(u
-1)\cdot	(u	-3)\cdots	4\cdot	2}{(u	-2)\cdot	(u	-4)\cdots	5\cdot	3}}.}	The	probability	density	function	is	symmetric,	and	its	overall	shape	resembles	the	bell	shape	of	a	normally	distributed	variable	with	mean	0	and	variance	1,	except	that	it	is	a	bit	lower	and	wider.	As	the	number	of	degrees	of	freedom	grows,	the	t	distribution	approaches	the	normal
distribution	with	mean	0	and	variance	1.	For	this	reason	ν	{\displaystyle	{u	}}	is	also	known	as	the	normality	parameter.[3]	The	following	images	show	the	density	of	the	t	distribution	for	increasing	values	of	ν	.	{\displaystyle	u	.}	The	normal	distribution	is	shown	as	a	blue	line	for	comparison.	Note	that	the	t	distribution	(red	line)	becomes	closer	to
the	normal	distribution	as	ν	{\displaystyle	u	}	increases.	Density	of	the	t	distribution	(red)	for	1,	2,	3,	5,	10,	and	30	degrees	of	freedom	compared	to	the	standard	normal	distribution	(blue).Previous	plots	shown	in	green.1	degree	of	freedom2	degrees	of	freedom3	degrees	of	freedom5	degrees	of	freedom10	degrees	of	freedom30	degrees	of	freedom	The
cumulative	distribution	function	(CDF)	can	be	written	in	terms	of	I,	the	regularized	incomplete	beta	function.	For	t	>	0	,	F	(	t	)	=	∫	−	∞	t			f	(	u	)			d	⁡	u			=			1	−	1	2	I	x	(	t	)	(			ν			2	,					1			2	)			,	{\displaystyle	F(t)=\int	_{-\infty	}^{t}\	f(u)\	\operatorname	{d}	u~=~1-{\frac	{1}{2}}I_{x(t)}\!\left({\frac	{\	u	\	}{2}},\	{\frac	{\	1\	}{2}}\right)\	,}	where	x	(	t	)
=	ν			t	2	+	ν					.	{\displaystyle	x(t)={\frac	{u	}{\	t^{2}+u	\	}}~.}	Other	values	would	be	obtained	by	symmetry.	An	alternative	formula,	valid	for			t	2	<	ν			,	{\displaystyle	\	t^{2}	1			,	{\displaystyle	u	>1\	,}	the	raw	moments	of	the	t	distribution	are	E	⁡	{			T	k			}	=	{	0	k		odd		,	0	<	k	<	ν			,	1			π					Γ	(			ν			2	)			[			Γ	(			k	+	1			2	)			Γ	(			ν	−	k			2	)			ν			k			2		
]	k		even		,	0	<	k	<	ν			.	{\displaystyle	\operatorname	{\mathbb	{E}	}	\left\{\	T^{k}\	\right\}={\begin{cases}\quad	0&k{\text{	odd	}},\quad	04~.}	Student's	t-distribution	with	ν	{\displaystyle	u	}	degrees	of	freedom	can	be	defined	as	the	distribution	of	the	random	variable	T	with[5][6]	T	=	Z	V	/	ν	=	Z	ν	V	,	{\displaystyle	T={\frac	{Z}{\sqrt	{V/u
}}}=Z{\sqrt	{\frac	{u	}{V}}},}	where	Z	is	a	standard	normal	with	expected	value	0	and	variance	1;	V	has	a	chi-squared	distribution	(χ2-distribution)	with	ν	{\displaystyle	u	}	degrees	of	freedom;	Z	and	V	are	independent;	A	different	distribution	is	defined	as	that	of	the	random	variable	defined,	for	a	given	constant	μ,	by	(	Z	+	μ	)	ν	V	.	{\displaystyle
(Z+\mu	){\sqrt	{\frac	{u	}{V}}}.}	This	random	variable	has	a	noncentral	t-distribution	with	noncentrality	parameter	μ.	This	distribution	is	important	in	studies	of	the	power	of	Student's	t-test.	Suppose	X1,	...,	Xn	are	independent	realizations	of	the	normally-distributed,	random	variable	X,	which	has	an	expected	value	μ	and	variance	σ2.	Let	X	¯	n	=	1	n
(	X	1	+	⋯	+	X	n	)	{\displaystyle	{\overline	{X}}_{n}={\frac	{1}{n}}(X_{1}+\cdots	+X_{n})}	be	the	sample	mean,	and	s	2	=	1	n	−	1	∑	i	=	1	n	(	X	i	−	X	¯	n	)	2	{\displaystyle	s^{2}={\frac	{1}{n-1}}\sum	_{i=1}^{n}\left(X_{i}-{\overline	{X}}_{n}\right)^{2}}	be	an	unbiased	estimate	of	the	variance	from	the	sample.	It	can	be	shown	that	the	random
variable	V	=	(	n	−	1	)	s	2	σ	2	{\displaystyle	V=(n-1){\frac	{s^{2}}{\sigma	^{2}}}}	has	a	chi-squared	distribution	with	ν	=	n	−	1	{\displaystyle	u	=n-1}	degrees	of	freedom	(by	Cochran's	theorem).[7]	It	is	readily	shown	that	the	quantity	Z	=	(	X	¯	n	−	μ	)	n	σ	{\displaystyle	Z=\left({\overline	{X}}_{n}-\mu	\right){\frac	{\sqrt	{n}}{\sigma	}}}	is
normally	distributed	with	mean	0	and	variance	1,	since	the	sample	mean	X	¯	n	{\displaystyle	{\overline	{X}}_{n}}	is	normally	distributed	with	mean	μ	and	variance	σ2/n.	Moreover,	it	is	possible	to	show	that	these	two	random	variables	(the	normally	distributed	one	Z	and	the	chi-squared-distributed	one	V)	are	independent.	Consequently[clarification
needed]	the	pivotal	quantity	T	≡	Z	V	/	ν	=	(	X	¯	n	−	μ	)	n	s	,	{\textstyle	T\equiv	{\frac	{Z}{\sqrt	{V/u	}}}=\left({\overline	{X}}_{n}-\mu	\right){\frac	{\sqrt	{n}}{s}},}	which	differs	from	Z	in	that	the	exact	standard	deviation	σ	is	replaced	by	the	sample	standard	error	s,	has	a	Student's	t-distribution	as	defined	above.	Notice	that	the	unknown
population	variance	σ2	does	not	appear	in	T,	since	it	was	in	both	the	numerator	and	the	denominator,	so	it	canceled.	Gosset	intuitively	obtained	the	probability	density	function	stated	above,	with	ν	{\displaystyle	u	}	equal	to	n	−	1,	and	Fisher	proved	it	in	1925.[8]	The	distribution	of	the	test	statistic	T	depends	on	ν	{\displaystyle	u	}	,	but	not	μ	or	σ;	the
lack	of	dependence	on	μ	and	σ	is	what	makes	the	t-distribution	important	in	both	theory	and	practice.	The	t	distribution	arises	as	the	sampling	distribution	of	the	t	statistic.	Below	the	one-sample	t	statistic	is	discussed,	for	the	corresponding	two-sample	t	statistic	see	Student's	t-test.	Let			x	1	,	…	,	x	n	∼	N	(	μ	,	σ	2	)			{\displaystyle	\	x_{1},\ldots
,x_{n}\sim	{\mathcal	{N}}(\mu	,\sigma	^{2})\	}	be	independent	and	identically	distributed	samples	from	a	normal	distribution	with	mean	μ	{\displaystyle	\mu	}	and	variance			σ	2			.	{\displaystyle	\	\sigma	^{2}~.}	The	sample	mean	and	unbiased	sample	variance	are	given	by:	x	¯	=			x	1	+	⋯	+	x	n			n			,	s	2	=	1			n	−	1					∑	i	=	1	n	(	x	i	−	x	¯	)	2			.
{\displaystyle	{\begin{aligned}{\bar	{x}}&={\frac	{\	x_{1}+\cdots	+x_{n}\	}{n}}\	,\\[5pt]s^{2}&={\frac	{1}{\	n-1\	}}\	\sum	_{i=1}^{n}(x_{i}-{\bar	{x}})^{2}~.\end{aligned}}}	The	resulting	(one	sample)	t	statistic	is	given	by	t	=	x	¯	−	μ			s	/	n					∼	t	n	−	1			.	{\displaystyle	t={\frac	{{\bar	{x}}-\mu	}{\	s/{\sqrt	{n\	}}\	}}\sim	t_{n-1}~.}	and	is
distributed	according	to	a	Student's	t	distribution	with			n	−	1			{\displaystyle	\	n-1\	}	degrees	of	freedom.	Thus	for	inference	purposes	the	t	statistic	is	a	useful	"pivotal	quantity"	in	the	case	when	the	mean	and	variance	(	μ	,	σ	2	)	{\displaystyle	(\mu	,\sigma	^{2})}	are	unknown	population	parameters,	in	the	sense	that	the	t	statistic	has	then	a
probability	distribution	that	depends	on	neither	μ	{\displaystyle	\mu	}	nor			σ	2			.	{\displaystyle	\	\sigma	^{2}~.}	Instead	of	the	unbiased	estimate			s	2			{\displaystyle	\	s^{2}\	}	we	may	also	use	the	maximum	likelihood	estimate			s	M	L	2	=			1			n			∑	i	=	1	n	(	x	i	−	x	¯	)	2			{\displaystyle	\	s_{\mathsf	{ML}}^{2}={\frac	{\	1\	}{n}}\	\sum	_{i=1}^{n}
(x_{i}-{\bar	{x}})^{2}\	}	yielding	the	statistic			t	M	L	=	x	¯	−	μ	s	M	L	2	/	n			=	n	n	−	1					t			.	{\displaystyle	\	t_{\mathsf	{ML}}={\frac	{{\bar	{x}}-\mu	}{\sqrt	{s_{\mathsf	{ML}}^{2}/n\	}}}={\sqrt	{{\frac	{n}{n-1}}\	}}\	t~.}	This	is	distributed	according	to	the	location-scale	t	distribution:	t	M	L	∼	ℓ	s	t	⁡	(	0	,			τ	2	=	n	/	(	n	−	1	)	,			n	−	1	)			.
{\displaystyle	t_{\mathsf	{ML}}\sim	\operatorname	{\ell	st}	(0,\	\tau	^{2}=n/(n-1),\	n-1)~.}	The	location-scale	t	distribution	results	from	compounding	a	Gaussian	distribution	(normal	distribution)	with	mean			μ			{\displaystyle	\	\mu	\	}	and	unknown	variance,	with	an	inverse	gamma	distribution	placed	over	the	variance	with	parameters			a	=			ν			2		
{\displaystyle	\	a={\frac	{\	u	\	}{2}}\	}	and	b	=			ν			τ	2			2			.	{\displaystyle	b={\frac	{\	u	\	\tau	^{2}\	}{2}}~.}	In	other	words,	the	random	variable	X	is	assumed	to	have	a	Gaussian	distribution	with	an	unknown	variance	distributed	as	inverse	gamma,	and	then	the	variance	is	marginalized	out	(integrated	out).	Equivalently,	this	distribution	results
from	compounding	a	Gaussian	distribution	with	a	scaled-inverse-chi-squared	distribution	with	parameters	ν	{\displaystyle	u	}	and			τ	2			.	{\displaystyle	\	\tau	^{2}~.}	The	scaled-inverse-chi-squared	distribution	is	exactly	the	same	distribution	as	the	inverse	gamma	distribution,	but	with	a	different	parameterization,	i.e.			ν	=	2			a	,	τ	2	=			b			a			.
{\displaystyle	\	u	=2\	a,\;{\tau	}^{2}={\frac	{\	b\	}{a}}~.}	The	reason	for	the	usefulness	of	this	characterization	is	that	in	Bayesian	statistics	the	inverse	gamma	distribution	is	the	conjugate	prior	distribution	of	the	variance	of	a	Gaussian	distribution.	As	a	result,	the	location-scale	t	distribution	arises	naturally	in	many	Bayesian	inference	problems.[9]
Student's	t	distribution	is	the	maximum	entropy	probability	distribution	for	a	random	variate	X	having	a	certain	value	of			E	⁡	{			ln	⁡	(	ν	+	X	2	)			}			{\displaystyle	\	\operatorname	{\mathbb	{E}	}	\left\{\	\ln(u	+X^{2})\	\right\}\	}	.[10][clarification	needed][better	source	needed]	This	follows	immediately	from	the	observation	that	the	pdf	can	be	written	in
exponential	family	form	with	ν	+	X	2	{\displaystyle	u	+X^{2}}	as	sufficient	statistic.	The	function	A(t	|	ν)	is	the	integral	of	Student's	probability	density	function,	f(t)	between		-t	and	t,	for	t	≥	0	.	It	thus	gives	the	probability	that	a	value	of	t	less	than	that	calculated	from	observed	data	would	occur	by	chance.	Therefore,	the	function	A(t	|	ν)	can	be	used
when	testing	whether	the	difference	between	the	means	of	two	sets	of	data	is	statistically	significant,	by	calculating	the	corresponding	value	of	t	and	the	probability	of	its	occurrence	if	the	two	sets	of	data	were	drawn	from	the	same	population.	This	is	used	in	a	variety	of	situations,	particularly	in	t	tests.	For	the	statistic	t,	with	ν	degrees	of	freedom,
A(t	|	ν)	is	the	probability	that	t	would	be	less	than	the	observed	value	if	the	two	means	were	the	same	(provided	that	the	smaller	mean	is	subtracted	from	the	larger,	so	that	t	≥	0	).	It	can	be	easily	calculated	from	the	cumulative	distribution	function	Fν(t)	of	the	t	distribution:	A	(	t	∣	ν	)	=	F	ν	(	t	)	−	F	ν	(	−	t	)	=	1	−	I	ν	ν	+	t	2	(	ν	2	,	1	2	)	,	{\displaystyle
A(t\mid	u	)=F_{u	}(t)-F_{u	}(-t)=1-I_{\frac	{u	}{u	+t^{2}}}\!\left({\frac	{u	}{2}},{\frac	{1}{2}}\right),}	where	Ix(a,	b)	is	the	regularized	incomplete	beta	function.	For	statistical	hypothesis	testing	this	function	is	used	to	construct	the	p-value.	The	noncentral	t	distribution	generalizes	the	t	distribution	to	include	a	noncentrality	parameter.	Unlike
the	nonstandardized	t	distributions,	the	noncentral	distributions	are	not	symmetric	(the	median	is	not	the	same	as	the	mode).	The	discrete	Student's	t	distribution	is	defined	by	its	probability	mass	function	at	r	being	proportional	to:[11]	∏	j	=	1	k	1	(	r	+	j	+	a	)	2	+	b	2	r	=	…	,	−	1	,	0	,	1	,	…			.	{\displaystyle	\prod	_{j=1}^{k}{\frac	{1}
{(r+j+a)^{2}+b^{2}}}\quad	\quad	r=\ldots	,-1,0,1,\ldots	~.}	Here	a,	b,	and	k	are	parameters.	This	distribution	arises	from	the	construction	of	a	system	of	discrete	distributions	similar	to	that	of	the	Pearson	distributions	for	continuous	distributions.[12]	One	can	generate	Student	A(t	|	ν)	samples	by	taking	the	ratio	of	variables	from	the	normal
distribution	and	the	square-root	of	the	χ²	distribution.	If	we	use	instead	of	the	normal	distribution,	e.g.,	the	Irwin–Hall	distribution,	we	obtain	over-all	a	symmetric	4	parameter	distribution,	which	includes	the	normal,	the	uniform,	the	triangular,	the	Student	t	and	the	Cauchy	distribution.	This	is	also	more	flexible	than	some	other	symmetric
generalizations	of	the	normal	distribution.	t	distribution	is	an	instance	of	ratio	distributions.	The	square	of	a	random	variable	distributed	tn	is	distributed	as	Snedecor's	F	distribution	F1,n.	Student's	t	distribution	generalizes	to	the	three	parameter	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			{\displaystyle	\operatorname	{\ell	st}	(\mu	,\	\tau
^{2},\	u	)\	}	by	introducing	a	location	parameter			μ			{\displaystyle	\	\mu	\	}	and	a	scale	parameter			τ			.	{\displaystyle	\	\tau	~.}	With			T	∼	t	ν			{\displaystyle	\	T\sim	t_{u	}\	}	and	location-scale	family	transformation			X	=	μ	+	τ			T			{\displaystyle	\	X=\mu	+\tau	\	T\	}	we	get			X	∼	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			.	{\displaystyle	\	X\sim	\operatorname	{\ell	st}
(\mu	,\	\tau	^{2},\	u	)~.}	The	resulting	distribution	is	also	called	the	non-standardized	Student's	t	distribution.	The	location-scale	t	distribution	has	a	density	defined	by:[13]	p	(	x	∣	ν	,	μ	,	τ	)	=	Γ	(	ν	+	1	2	)	Γ	(	ν	2	)	τ	π	ν	(	1	+	1	ν	(	x	−	μ	τ	)	2	)	−	(	ν	+	1	)	/	2	{\displaystyle	p(x\mid	u	,\mu	,\tau	)={\frac	{\Gamma	\left({\frac	{u	+1}{2}}\right)}{\Gamma
\left({\frac	{u	}{2}}\right)\tau	{\sqrt	{\pi	u	}}}}\left(1+{\frac	{1}{u	}}\left({\frac	{x-\mu	}{\tau	}}\right)^{2}\right)^{-(u	+1)/2}}	Equivalently,	the	density	can	be	written	in	terms	of	τ	2	{\displaystyle	\tau	^{2}}	:			p	(	x	∣	ν	,	μ	,	τ	2	)	=	Γ	(	ν	+	1	2	)	Γ	(	ν	2	)	π	ν	τ	2	(	1	+	1	ν	(	x	−	μ	)	2	τ	2	)	−	(	ν	+	1	)	/	2	{\displaystyle	\	p(x\mid	u	,\mu	,\tau	^{2})=
{\frac	{\Gamma	({\frac	{u	+1}{2}})}{\Gamma	\left({\frac	{u	}{2}}\right){\sqrt	{\pi	u	\tau	^{2}}}}}\left(1+{\frac	{1}{u	}}{\frac	{(x-\mu	)^{2}}{\tau	^{2}}}\right)^{-(u	+1)/2}}	Other	properties	of	this	version	of	the	distribution	are:[13]	E	⁡	{			X			}	=	μ		for		ν	>	1			,	var	⁡	{			X			}	=	τ	2	ν	ν	−	2		for		ν	>	2			,	mode	⁡	{			X			}	=	μ			.	{\displaystyle
{\begin{aligned}\operatorname	{\mathbb	{E}	}	\{\	X\	\}&=\mu	&{\text{	for	}}u	>1\	,\\\operatorname	{var}	\{\	X\	\}&=\tau	^{2}{\frac	{u	}{u	-2}}&{\text{	for	}}u	>2\	,\\\operatorname	{mode}	\{\	X\	\}&=\mu	~.\end{aligned}}}	If			X			{\displaystyle	\	X\	}	follows	a	location-scale	t	distribution			X	∼	ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	)			{\displaystyle	\	X\sim
\operatorname	{\ell	st}	\left(\mu	,\	\tau	^{2},\	u	\right)\	}	then	for			ν	→	∞			{\displaystyle	\	u	\rightarrow	\infty	\	}			X			{\displaystyle	\	X\	}	is	normally	distributed	X	∼	N	(	μ	,	τ	2	)	{\displaystyle	X\sim	\mathrm	{N}	\left(\mu	,\tau	^{2}\right)}	with	mean	μ	{\displaystyle	\mu	}	and	variance			τ	2			.	{\displaystyle	\	\tau	^{2}~.}	The	location-scale
t	distribution			ℓ	s	t	⁡	(	μ	,			τ	2	,			ν	=	1	)			{\displaystyle	\	\operatorname	{\ell	st}	\left(\mu	,\	\tau	^{2},\	u	=1\right)\	}	with	degree	of	freedom	ν	=	1	{\displaystyle	u	=1}	is	equivalent	to	the	Cauchy	distribution	C	a	u	(	μ	,	τ	)			.	{\displaystyle	\mathrm	{Cau}	\left(\mu	,\tau	\right)~.}	The	location-scale	t	distribution	ℓ	s	t	⁡	(	μ	=	0	,			τ	2	=	1	,			ν	)		
{\displaystyle	\operatorname	{\ell	st}	\left(\mu	=0,\	\tau	^{2}=1,\	u	\right)\	}	with	μ	=	0	{\displaystyle	\mu	=0}	and			τ	2	=	1			{\displaystyle	\	\tau	^{2}=1\	}	reduces	to	the	Student's	t	distribution			t	ν			.	{\displaystyle	\	t_{u	}~.}	Student's	t	distribution	arises	in	a	variety	of	statistical	estimation	problems	where	the	goal	is	to	estimate	an	unknown
parameter,	such	as	a	mean	value,	in	a	setting	where	the	data	are	observed	with	additive	errors.	If	(as	in	nearly	all	practical	statistical	work)	the	population	standard	deviation	of	these	errors	is	unknown	and	has	to	be	estimated	from	the	data,	the	t	distribution	is	often	used	to	account	for	the	extra	uncertainty	that	results	from	this	estimation.	In	most
such	problems,	if	the	standard	deviation	of	the	errors	were	known,	a	normal	distribution	would	be	used	instead	of	the	t	distribution.	Confidence	intervals	and	hypothesis	tests	are	two	statistical	procedures	in	which	the	quantiles	of	the	sampling	distribution	of	a	particular	statistic	(e.g.	the	standard	score)	are	required.	In	any	situation	where	this
statistic	is	a	linear	function	of	the	data,	divided	by	the	usual	estimate	of	the	standard	deviation,	the	resulting	quantity	can	be	rescaled	and	centered	to	follow	Student's	t	distribution.	Statistical	analyses	involving	means,	weighted	means,	and	regression	coefficients	all	lead	to	statistics	having	this	form.	Quite	often,	textbook	problems	will	treat	the
population	standard	deviation	as	if	it	were	known	and	thereby	avoid	the	need	to	use	the	Student's	t	distribution.	These	problems	are	generally	of	two	kinds:	(1)	those	in	which	the	sample	size	is	so	large	that	one	may	treat	a	data-based	estimate	of	the	variance	as	if	it	were	certain,	and	(2)	those	that	illustrate	mathematical	reasoning,	in	which	the
problem	of	estimating	the	standard	deviation	is	temporarily	ignored	because	that	is	not	the	point	that	the	author	or	instructor	is	then	explaining.	A	number	of	statistics	can	be	shown	to	have	t	distributions	for	samples	of	moderate	size	under	null	hypotheses	that	are	of	interest,	so	that	the	t	distribution	forms	the	basis	for	significance	tests.	For
example,	the	distribution	of	Spearman's	rank	correlation	coefficient	ρ,	in	the	null	case	(zero	correlation)	is	well	approximated	by	the	t	distribution	for	sample	sizes	above	about	20.[citation	needed]	Suppose	the	number	A	is	so	chosen	that			P	⁡	{			−	A	<	T	<	A			}	=	0.9			,	{\displaystyle	\	\operatorname	{\mathbb	{P}	}	\left\{\	{-A}
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