
	

https://felevetin.gonujovux.com/962913926280899909788513725535840171301750?nevexeniluwaremebusowigugusinawagujakigiwo=kaluwujojefizejumazatobazixijebotizipugujekinazogidazupopokozedobesulufezulamugoluzizomigatorunopatiwupajipogatovivuxesokuxowugumakeloteruxiranekejubexeravoxolaxinasatifubazatifumasuravewofefijilupabudopafozo&utm_term=problems+on+symmetrical+fault+analysis&forusigupovasizazitunugugabizalajedilunidekigifanojerasomesajidanamofugofiv=vikajolovanigudutaterogaluguxadopedisotulipofaxibusenemomabawiwuvupibajotomotewufofivifinapederugibobujanagonodoxuvoledexolopesupuz

JavaScript	is	disabled	in	your	browser.	Please	enable	JavaScript	to	proceed.	You	can’t	perform	that	action	at	this	time.	$define1Generating	Comments	As	described	in	Section	State	Machines,	QM	provides	extensive	support	for	modern	Hierarchical	State	Machines	(HSMs)↑	(UML	Statecharts).	From	the	code	engineering	point	of	view,	state	machines
are	the	most	"constructive"	element	of	the	UML	and	the	support	of	state	machine	code	generation	is	the	most	valuable	aspect	of	QM.	This	section	describes	the	state	machine	implementation	strategies	and	coding	aspects	for	hierarchical	state	machines	in	C	and	C++.	Class	ToastOven	with	a	hierarchical	state	machine	used	in	the	following	examples
of	code	generation	As	described	in	Section	State	Machine	Base	Classes,	QM	supports	two	state	machine	implementation	strategies,	depending	on	the	selected	base	class	for	the	application-level	state	machine:	State	Machine	Constructor	Apart	from	selecting	the	superclass	(base	class)	in	the	Class	Property	Sheet,	the	constructor	of	the	application-
level	state	machine	must	call	the	appropriate	base	class	constructor.	For	example,	a	state	machine	class	derived	from	QHsm	must	call	the	QHsm	constructor	and	class	derived	from	QMActive	must	call	QMActive	constructor.	State	Machine	Constructor	in	C	The	Section	Class	Constructors	in	C	describes	how	to	model	class	constructors	in	C.	has	been
described	in	the	B	State	Machine	Constructor	in	C++	Action	Code	in	C	Accessing	Attributes	Accessing	Event	Parameters	Action	Code	in	C++	Accessing	Attributes	Accessing	Event	Parameters	$define1Generating	Comments	StateSmith	is	a	cross	platform,	free/open	source	tool	for	generating	state	machines	in	multiple	programming	languages.	The
generated	code	is	human	readable,	has	zero	dependencies	and	is	suitable	for	use	with	tiny	bare	metal	microcontrollers,	video	games,	apps,	web,	computers...	It	avoids	dynamic	memory	allocations	for	the	safety	or	performance	inclined.	The	above	is	my	current	plan,	but	I'll	gladly	help	anyone	add	a	new	language.	I'm	hoping	contributors	will	help	me
with	this	effort.	It	is	tricky	though...	The	fundamentals-1	webpage	has	simple	interactive	examples	that	let	you	explore	most	StateSmith	features.	Want	to	jump	right	in	and	just	try	it!?	The	below	tutorials	use	new	StateSmith	features	that	are	more	user	friendly.	They	use	different	diagram	tools,	but	mirror	each	other	fairly	closely	otherwise.	If	you	are
new	to	state	machines,	then	prepare	to	level	up	your	toolbox!	They	are	incredibly	helpful	for	certain	applications.	Why	StateSmith?	I	couldn't	find	a	quality	state	machine	code	generator	that	met	my	needs,	had	an	attractive	license,	and	was	enjoyable	to	use.	Before	I	created	StateSmith,	it	was	always	a	pain	trying	to	manually	synchronize	a	hand
written	state	machine	with	a	drawing.	Urgent	client	requests	come	in	and	you	update	the	code,	but	do	you	and	your	team	always	remember	to	update	the	drawing?	Probably	not	and	so	the	rot	begins.	Documentation	trust	issues	arise	and	as	designs	get	larger,	the	effort	to	ensure	the	diagram	is	accurate	starts	to	become	quite	punishing.	Now	that	we
use	StateSmith	at	my	work,	I	never	have	to	worry	about	the	above.	I	love	generating	fully	working	code	from	the	documentation.	Incredibly	helpful	for	teams	and	communicating	with	clients.	The	StateSmith-examples	repo	has	a	growing	list	of	examples	showcasing	different	application	uses.	We	use	StateSmith	in	a	fair	number	of	production	projects
at	my	work.	It's	been	super	helpful.	Other	companies	are	using	StateSmith	in	production	as	well	(consumer	electronics,	autonomous	vehicles,	...).	StateSmith	has	a	strong	suite	of	tests	(730+)	and	behavior	specification	coverage.	The	specification	integration	tests	read	a	diagram	file,	generate	executable	state	machine	code,	then	compile	and	execute
that	code	in	another	process	and	ensure	that	the	state	machine	behavior	is	exactly	what	was	expected.	The	same	suite	of	integration	tests	run	for	each	supported	programming	language.	This	strong	test	base	gives	me	confidence.	It	also	allows	us	to	refactor	and	optimize	StateSmith	without	fear	of	accidentally	breaking	specified	behavior.	The
StateSmith	GitHub	wiki	has	a	good	amount	of	documentation	right	now,	but	always	feel	free	to	ask	a	question.	YouTube	channel:	statesmith	Join	us	on	discord.	Feel	free	to	open	a	github	issue.	Or	you	can	use	the	project's	discussion	space.	Code	generation	tool	written	in	Python	for	C++	hierarchical	state	machines.	The	basic	idea	is	to	design	your
state	machine	graphically	in	PlantUml	and	then	use	the	PlantUml	input	file	also	as	an	input	file	for	FloHsm.py	to	generate	C++	code.	PlantUml	can	draw	states	and	transitions,	but	does	not	have	knowledge	of	basic	state	machine	concepts	such	as	event,	actions	and	guards.	A	state	transition	in	PlantUml	is	simply	written	as	State1	-->	State2	:	comment
Here,	'comment'	is	a	free	format	string	that	is	printed	along	with	the	transition	arrow	in	the	state	diagram.	This	is	fine	for	a	diagram,	but	in	a	concrete	state	machine	implementation	a	state	transition	must	be	triggered	by	an	event	and	it	may	or	may	not	have	an	action	attached	to	it.	Also,	depending	on	some	guard	condition,	the	transition	may	or	may
not	be	performed.	FloHsm	has	solved	this	problem	by	defining	additional	state	machine	language	elements	that	are	ignored	by	PlantUml,	but	shown	in	the	diagram	as	plain	text.	Here	are	some	examples	of	valid	FloHsm	transitions.	Basically	everything	before	the	semicolon	is	standard	PlantUml	syntax,	everything	after	the	semicolon	is	FloHsm	syntax.
Transition	triggered	by	event	E1	Transition	triggerd	by	event	E1,	but	only	if	boolean	guard	expression	G1	evaluates	to	true	Transition	with	action	A1,	with	and	without	guard	S1	-->	S2	:	E1	/	A1	S1	-->	S2	:	E1	[G1]	/	A1	python	FloHsm.py	statemachine.txt	See	Source/Generated/TestCompositeState	for	an	example.	Open	the	.puml	file	in	plantuml	and
have	a	look	at	the	test	for	using	the	generated	code	in	C++	For	now,	FloHsm	does	not	parse	the	@startuml	and	@enduml	keywords	that	are	required	by	PlantUml.	The	solution	is	to	write	the	state	machine	description	in	a	text	file	sm.txt.	This	file	is	used	for	FloHsm.	A	second	file	sm.puml	only	contains	the	following	lines	and	is	used	to	render	the
diagram	in	PlantUml	@startuml	!include	sm.txt	@enduml	After	running	FloHsm.py,	most	of	your	state	machine	code	is	generated,	but	there	are	two	things	that	the	tool	cannot	generate.	The	implementation	of	the	actions	and	the	guards.	You	need	to	write	them	yourself	in	your	state	machine	class.	They	are	however	present	in	as	pure	virtual	functions
in	the	state	machine	base	class	from	which	your	state	machine	derives,	so	you	just	need	to	override	and	implement	them.	You	also	need	to	initialize	the	state	machine	before	use.	In	short	Derive	your	state	machine	class	from	StateMachineBase	Implement	al	pure	virtual	functions	from	StateMachineBase	(the	actions	and	guards)	Make	sure	to	call
InitStateMachine()	from	your	state	machine	class	before	using	it,	e.g.	from	the	constructor	or	an	init	method	Calling	the	event	methods	(inherited	from	StateMachineBase,	you	don't	need	to	do	anything	here)	on	your	state	machine	will	now	cause	state	transitions,	execution	of	actions,	etc...	There	are	a	couple	of	tests	that	demonstrate	most	of	the
FloHsm	capabilities.	Please	find	them	in	Source/Generated/Test*.	There	is	a	.puml	file	for	viewing	in	PlantUml	and	a	.txt	file	that	is	used	for	FloHsm.	Generate	the	state	machine	files	and	run	the	tests.	This	is	as	easy	as	building	the	project	in	Visual	Studio	2017	and	running	the	test	executable.	The	tests	should	be	easy	to	compile	on	other	platforms
and	compilers,	but	development	and	testing	was	only	done	on	Windows	with	Visual	Studio	More	documentation	and	implementation	coming	soon.	See	the	issues	page	for	identified	open	issues	State	behaviors	can	also	have	guard	conditions.	The	transition	from	ON2	to	ON_HOT	has	a	guard	condition	[count	>=	3].	This	transition	will	only	be	taken	on
the	INCREASE	event	if	count	>=	3.	Transition	guards	can	be	any	code	that	evaluate	to	a	boolean	result.	In	this	example,	the	guard	tests	a	state	machine	variable,	but	it	could	call	a	function,	a	bunch	of	functions,	do	some	math...	Another	interesting	thing	in	this	example	is	that	we	specify	the	order	of	the	ON2	behaviors	for	the	INCREASE	event.	We
want	to	run	count++	before	testing	if	we	should	transition	with	[count	>=	3].	You	can	read	more	about	state	behaviors	here.	Auto	clear	diagram	highlights.	State	machine	variables	count:	0	Sinelabore	enables	developers	to	effectively	combine	event-driven	architecture,	hierarchical	state	machines,	model-based	design	and	automatic	code	generation.
A	payback	is	usually	given	already	immediately.	SinelaboreRT	focus	is	on	generation	of	readable	and	maintainable	code	from	flat	or	hierarchical	UML	state	machine	diagrams.	With	its	unique	features	the	tool	covers	perfectly	the	requirements	of	embedded	real-time	and	low-power	application	developers	coding	in	C	/	CPP.	The	generated	code	is
independent	of	CPU	and	operating	system.	Many	systems	are	likely	candidates	for	implementation	as	finite	state	machines.	A	system	that	must	sequence	a	series	of	actions	or	that	must	handle	inputs	differently	depending	on	the	mode	it	is	in	is	often	best	implemented	as	a	finite	state	machine.	Typical	examples	are	control-logic-oriented	applications
such	as	metering,	monitoring,	workflows	and	control	applications.	For	IoT	applications	where	parts	of	the	application	are	implemented	in	Java	/	Python	/	C#	/	Lua	/	Rust	/	JavaScript	/	Go	or	Swift,	the	code	can	also	be	generated	in	these	languages.	The	Sinelabore	code	generator	runs	on	any	OS	that	supports	a	modern	Java	Version	e.g.	Windows,	Linux,
macOS	or	from	within	a	container.	By	generating	code	that	can	be	compiled	with	virtually	any	compiler,	and	the	ability	to	integrate	with	your	existing	IDE,	build	process	or	continuous	integration	system,	the	code	generator	can	be	quickly	integrated	into	any	project.	Configuration	is	stored	in	a	plain	text	file	which	allows	customisation	of	generated
code	to	exactly	your	needs.	Generated	code	has	production-quality.	It	is	based	on	nested	switch/case	and	if/then/else	statements.	It	is	easy	to	read,	understand	and	debug	if	needed.	The	generated	code	requires	no	compiler	specific	tricks	except	standard	language	features.	This	means	that	if	the	worst	comes	to	the	worst,	you	can	easily	change	or
expand	the	code	by	hand.	Can	be	used	with	any	8-,	16-	or	32-bit	CPUs.	There	is	no	run-time	environment	needed	like	with	some	other	solutions.	Fits	well	in	different	system	designs.	The	code	generator	does	not	dictate	how	you	design	your	system.	Therefore	it	is	no	problem	to	use	the	generated	code	in	the	context	of	a	real-time	operating	system
(VxWorks,	FreeRTOS,	embOS,	RTEMS,	…)	or	within	an	interrupt	service	routine	or	in	a	foreground	/	background	(super	loop)	system.	There	will	be	no	problems	when	using	static	code	analyzers.	Generated	cpp	code	passes	clang-tidy	and	is	cpp11	ready	(modernize-*).	Set	configuration	parameters	accordingly.	Avoid	bugs	that	can	waste	countless
hours	of	developer	and	end-user	time	before	they	are	found.	Developers	spend	a	lot	of	their	time	coding	state	machines	by	hand.	And	have	to	do	it	whenever	the	design	changes.	Sinelabore	avoids	the	error-prone	and	tedious	hand-coding	by	generating	high-quality	source	code	directly	from	the	state	machine	design	document.	No	gap	between	design
and	code	anymore.	The	documentation	is	always	up	to	date.	An	integrated	state	diagram	editor	makes	it	easy	to	get	started	and	allows	you	to	create	state	diagrams	within	minutes.	The	entry	barrier	is	significantly	lower	compared	to	full-fledged	UML	tools.	A	series	of	tutorials	(see	sidebar)	explains	step	by	step	how	to	use	the	integrated	diagram	tool.
Use	the	code	generator	only	for	those	parts	of	your	software	that	benefit	from	state	machine	modeling	and	code	generation.	Use	your	existing	development	environment	for	all	the	other	code.	The	code-generator	does	not	dictate	an	“all	or	nothing”	approach	as	many	other	commercial	tools.	Automatic	robustness	tests,	test-case	generation,	tracing	and
simulation	Extensive	Manual	with	getting	started	section	The	code	generator	runs	locally	on	your	developer	workstations,	build	servers	or	continuous	integration	servers.	It	does	not	use	an	internet	connection	and	will	never	collect	nor	submit	data,	code,	statistics,	analytics,	or	any	other	information	from	your	system	over	any	channel.	To	get	an
impression	of	the	powerful	capabilities	of	the	tool	download	the	demo	version.	Checkout	the	examples	folder	to	see	the	generated	code.	Follow	the	“Getting	Started”	pages	on	this	website.	The	manual	contains	a	basic	introduction	into	state-machines	in	case	you	need	a	refresh.	Read	the	sections	related	to	your	UML	tool	and	the	language	backend	you
want	to	use.	If	no	UML	tool	is	already	in	place	take	a	look	at	the	built	in	state	machine	diagram	editor.	To	run	the	code	you	have	two	options.	Run	the	examples	on	your	PC.	The	example	folder	contains	examples	for	all	supported	modelling	tools	and	various	languages	(C,	CPP,	…).	The	examples	realizes	a	microwave	oven	and	can	be	executed	and
tested.	Play	with	the	model	and	enhance	it.	Regenerate	the	code	and	learn	from	the	warning	and	error	messages.	Run	examples	on	a	Micro-Controller	e.g.	a	MSP430	evaluation	board	using	Energia.	An	example	with	all	details	is	available	on	github.	Sinelabore	Code	Generator	is	used	worldwide	by	companies	of	all	sizes,	from	well-known	multinational
organizations	to	smaller	independent	companies	and	consultants.	The	code	generator	is	also	used	in	a	wide	range	of	industries.	“Sinelabore	has	helped	me	implement	the	behavior	of	a	complex,	asynchronous	system.	All	the	UML	2	elements	I	needed	are	available.	I	like	that	I	don’t	have	to	draw	the	state	machine,	then	separately	implement	it	and
keep	these	two	synchronized;	this	saves	me	time	and	reduces	the	potential	of	bugs.	The	error	checking	to	make	sure	the	state	machine	is	valid	is	also	useful.	—-	Daniel	Bedrenko	/	Software	Developer	@	BPS…tec	GmbH”	“Thank	you	again	for	providing	such	great	tool!”	“…	wir	nutzen	Ihr	Produkt	schon	seit	vielen	Jahren	und	es	hat	sich	als
zuverlässiges	und	wertvolles	Werkzeug	erwiesen	…”	“We	like	Your	Tool,	infact	we	will	give	intro	for	another	local	company	next	week.”	Study	done	by	“Laboratory	of	Model	Driven	Engineering	for	Embedded	Systems	@	CEA	in	France”	with	the	title	“Complete	Code	Generation	from	UML	State	Machine”	write	in	their	report	“	…	without	optimization,
Sinelabore	generates	the	smallest	executable	size	,,,”.	Reactive	systems	are	characterized	by	a	continuous	interaction	with	their	environment.	They	typically	continuously	receive	inputs	(events)	from	their	environment	and	−	usually	within	quite	a	short	delay	−	react	on	these	inputs.	Reactive	systems	can	be	very	well	described	with	the	help	of	state
machines.	State	machines	allow	to	develop	an	application	in	an	iterative	way.	States	in	the	state	diagram	often	correspond	to	states	in	the	application.	The	resulting	model	helps	to	manage	the	complexity	of	the	application	and	to	discuss	it	with	colleagues	from	other	departments	(and	domains).	Details	can	be	added	step	by	step	during	the
development.	Even	during	creation,	the	Code	Generator	can	check	the	state	diagrams	for	consistency	(Model	Check).	Its	logic	can	be	simulated	and	tested.	This	ensures	that	the	state	machine	behaves	as	intended.	State	machines	are	very	useful	for	control-oriented	applications	where	attributes	such	as	reliability,	code	size,	power	consumption,	and
real-time	behavior	are	particularly	important.	There	are	different	ways	how	to	integrate	state	machines	in	a	specific	system	design.	Some	design	principles	are	more	applicable	for	developers	of	deeply	embedded	systems.	Others	more	relevant	for	developers	having	not	so	tight	resource	constraints.	The	SinelaboreRT	code	generator	supports	you	in
the	creation	of	the	state	based	control	logic.	Generated	code	fits	well	in	different	system	designs.	The	code	generator	does	not	dictate	how	you	design	your	system.	Therefore	it	is	no	problem	to	use	the	generated	code	in	the	context	of	a	real-time	operating	system	or	within	an	interrupt	service	routine	or	in	a	foreground	/	background	system.	In	this
design	an	endless	loop	—	typically	the	main	function	—	calls	one	or	more	state	machines	after	each	other.	It	is	still	one	of	the	most	common	ways	of	designing	small	embedded	systems.	The	event	information	processed	from	the	state	machines	might	come	from	global	or	local	variables	fed	from	other	code	or	IRQ	handlers.	The	benefits	of	this	design
are	no	need	for	a	runtime	framework	and	only	little	RAM	requirements.	The	consequences	are:	All	housekeeping	code	has	to	be	provided	by	the	designer	Main	loop	must	be	fast	enough	for	the	overall	required	response	time	In	case	of	extensions	the	timing	must	be	carefully	rechecked	again	Example:	void	main(void){	…	sm_A();	sm_B();	…	}	This
design	is	like	the	one	presented	above.	But	the	state	machine	receives	its	events	from	an	event	queue.	The	queue	is	filled	from	timer	events,	other	state	machines	(cooperating	machines)	or	interrupt	handlers.	Benefits:	Events	are	not	lost	(queuing)	Decoupling	of	event	processing	from	event	generation.	Consequences:	A	minimal	runtime	framework	is
required:	Timers	and	Queues	Main	loop	must	be	fast	enough	for	the	overall	required	response	time	A	minimal	runtime	framework	for	C	is	available	here:	It	offers	timers	and	queues.	The	intended	usage	is	as	follows:	Each	state	machine	has	an	own	event	queue	Eventually	a	state	machine	requires	one	or	more	timers	(single	shot	or	cyclically).	A	state
machine	can	create	as	many	timers	as	needed.	When	creating	a	timer	the	event	queue	of	the	state	machine	and	the	timeout	event	has	to	be	provided.	For	different	timers	it	makes	sense	to	provide	different	timeout	events.	To	make	the	timer	work,	a	tick	counter	variable	has	to	be	incremented	cyclically	from	a	timer	interrupt	(e.g.,	every	10	ms).	The
tick	frequency	should	be	selected	based	on	the	minimal	required	resolution	of	the	timeout	times.	A	tick()	function	must	be	called	in	the	main	loop	to	check	if	any	timer	has	expired.	In	case	a	timeout	has	happened	the	provided	event	is	stored	in	the	event	queue	of	the	state	machine.	The	main	loop	has	to	check	if	events	are	stored	for	a	state	machine	in
its	queue.	If	there	are	new	events	they	are	pulled	from	the	queue	and	the	state	machine	is	called	with	the	event.	Example	code	with	two	state	machines	shows	the	general	principle:	//	tick	irq	void	tick(void){	pulseCnt++;	}					void	main(void){	….			//	create	two	queues	for	two	state	machines	and	init	the	timer	subsystem	fifoInit(&fifo2VendingMachine,
fifo2VendingMachineRawMem,	8);	fifoInit(&fifo2ProductStoreMachine,	fifo2ProductStoreMachineRawMem,	8);	timerInit();			…			while	(1)	{	uint8_t	evt;	//	//	Check	if	there	are	new	events	for	the	state	machine.	If	yes,	//	call	state	machine	with	event.	//	bool	fifoEmpty	=	fifoIsEmpty(&fifo2VendingMachine);	if	(!fifoEmpty)	{
fifoGet(&fifo2VendingMachine,	&evt);	vending_machine(&vendingMachine,	evt);	}			fifoEmpty	=	fifoIsEmpty(&fifo2ProductStoreMachine);	if	(!fifoEmpty)	{	fifoGet(&fifo2ProductStoreMachine,	&evt);	product_store_sm(&productStoreMachine,	evt);	}			//	any	new	timeouts?	tick();	}	As	indicated	in	the	figure	above	also	other	state	machines	or	interrupt
handlers	might	push	events	to	the	queue	of	a	state	machine.	An	example	how	to	do	this	is	shown	below.	//	add	event	evErr	to	a	state	machine	queue.	void	ISR_Btn1()	{	fifoPut(&fifo2VendingMachine,	evErr);	}	In	low	power	system	designs	a	key	design	goal	is	to	keep	the	processor	as	long	as	possible	in	low	power	mode	and	only	wake	it	up	if	something
needs	to	be	processed.	The	design	is	very	similar	to	the	one	described	above.	The	main	difference	is	that	the	main	loop	runs	not	all	time	but	only	in	case	an	event	has	happened.	The	timer	service	for	the	small	runtime	framework	is	handled	in	the	timer	interrupt.	A	skeleton	for	the	MSP430	looks	as	follows:	void	main(void){			//	init	system			while(1)	{		
//	check	event	queues	and	run	the	state	machine	as	shown	above			…	__bis_SR_register(LPM3_bits	+	GIE);	//	Enter	low	power	mode	once	__no_operation();	//	no	more	events	to	process	}	}			//	Timer	A0	interrupt	service	routine.	If	the	timer	//	function	tick()	returns	true	there	//	is	a	timeout	and	we	wakeup	the	main	loop.	#pragma
vector=TIMER0_A0_VECTOR	__interrupt	void	Timer_A0(void)	{	bool	retVal=false;			P1OUT	|=	BIT0;	//	toggle	for	debugging			retVal	=	tick();			if(retVal){	//	at	least	one	timeout	timer	fired.	//	wake	up	main	loop	bic_SR_register_on_exit(LPM3_bits);	}	P1OUT	&=	~BIT0;	//	toggle	for	debugging	//	no	more	events	must	be	processed	}	The	following
temperature	transmitter	using	a	MSP430F1232	header	board	with	just	256	bytes	of	RAM	and	8K	of	program	memory	is	based	on	this	design	principle.	For	more	information	on	how	to	use	state-machines	in	low-power	embedded	systems	see	here	and	here.	Sometimes	state	dependent	interrupt	handling	is	required.	Then	it	is	useful	to	embed	the	state
machine	directly	into	the	interrupt	handler	to	save	every	us.	Typical	usage	might	be	the	pre-processing	of	characters	received	by	a	serial	interface.	Or	state	dependent	filtering	of	an	analog	signal	before	further	processing	takes	place.	Using	state	machines	in	an	interrupt	handler	can	be	useful	in	any	system	design.	For	code	generation	some
considerations	are	necessary.	Usually	it	is	necessary	to	decorate	interrupt	handlers	with	compiler	specific	keywords	or	vector	information	,	etc.	Furthermore	interrupt	service	handlers	have	no	parameters	and	no	return	value.	To	meet	these	requirements	the	Sinelabore	code	generator	offers	the	parameters	StateMachineFunctionPrefixHeader,
StateMachineFunctionPrefixCFile	and	HsmFunctionWithInstanceParameters.	The	example	below	shows	an	interrupt	service	routine	with	the	compiler	specific	extensions	as	required	by	mspgcc	//	generated	state	machine	code	for	an	irq			interrupt	(INTERRUPT_VECTOR)	IntServiceRoutine(void)	{	/*	generated	statemachine	code	goes	here	*/	}	To
generate	this	code,	set	the	key/value	pairs	in	your	configuration	file	the	following	way:	StateMachineFunctionPrefixCFile=interrupt	(INTERRUPT_VECTOR)	HsmFunctionWithInstanceParameters=no	If	the	prefix	of	the	interrupt	service	routine	requires	to	span	more	than	one	line	the	line	break	’’	character	can	be	inserted	as	shown	below:
StateMachineFunctionPrefixCFile=#pragma	vector=UART0TX_VECTOR__interrupt	void	Prefixes	for	the	header	and	the	C	file	can	be	specified	separately.	In	this	design	each	state	machine	usually	runs	in	the	context	of	an	own	task.	The	principle	design	is	shown	in	the	following	figure.	Each	task	executes	a	state	machine	(often	called	active	object)	in
an	endless	while	loop.	The	tasks	wait	for	new	events	to	be	processed	from	the	state	machine.	In	case	no	event	is	present	the	task	is	set	in	idle	mode	from	the	RTOS.	In	case	one	or	more	new	events	are	available	the	RTOS	wakes	up	the	task.	The	used	RTOS	mechanism	for	event	signaling	can	be	different.	But	often	a	message	queue	is	used.	Events
might	be	stored	in	the	event	queue	from	various	sources.	E.g.	from	within	another	task	or	from	inside	an	interrupt	service	routine.	This	design	can	be	realized	with	every	real-time	operating	system.	Only	the	event	transport	mechanisms	might	differ.	Benefits:	Efficient	and	well	tested	runtime	environment	provided	from	the	real-time	operating	system
Prioritization	of	tasks,	scheduling	available	State	machine	processing	times	decoupled	from	each	other.	Consequences:	Need	of	a	real-time	operating	system	(complexity,	ram	usage,	cost	…)	In	the	how-to	section	an	example	of	this	pattern	is	presented	with	FreeRTOS.	The	examples	below	shows	code	for	the	RTEMS	and	embOS.	Example	code	for
RTEMS	//	rtems	specific	task	body	rtems_task	oven_task(rtems_task_argument	unused)	{	OVEN_INSTANCEDATA_T	inst	=	OVEN_INSTANCEDATA_INIT;			for	(;	;)	{	//	returns	if	one	event	was	processed	oven(&inst);	}	}					//	generated	state	machine	code	extern	rtems_id	Queue_id;	uint8_t	msg=NO_MSG;	size_t	received;	rtems_status_code	status;		
void	oven(OVEN_INSTANCEDATA_T	*instanceVar)	{			OVEN_EV_CONSUMED_FLAG_T	evConsumed	=	0U;					/*execute	entry	code	of	default	state	once	to	init	machine	*/	if	(instanceVar->superEntry	==	1U)	{	ovenOff();			instanceVar->superEntry	=	0U;	}			/*	action	code	*/	/*	wait	for	message	*/	status	=	rtems_message_queue_receive(Queue_id,	(void
*)	&msg,	&received,	RTEMS_DEFAULT_OPTIONS,	RTEMS_NO_TIMEOUT);	if	(status	!=	RTEMS_SUCCESSFUL)	error_handler();	}else{	switch	(instanceVar->stateVar)	{	//	generated	state	handling	code	…	}	}	}	Example	code	for	embOS	RTOS	from	Segger.	//	state	machine	instance	SM_INSTANCEDATA_T	instanceVar	=	SM_INSTANCEDATA_INIT;
		//	Task	and	queue	objects.	static	OS_STACKPTR	int	Stack_TASK_1[128];	/*	Task	stacks	*/	static	OS_TASK	TCB_TASK_1;	/*	Task-control-blocks	*/	static	OS_Q	MyQueue;	static	char	MyQBuffer[100];			OS_TIMER	MyTimer;			char	txbuf[32]	;			//	Routine	called	from	the	embOS	RTOS	to	signal	//	a	timeout.	A	timeout	event	is	sent	to	the	state	//	machine.
Multiple	timer	callback	functions	might	be	created	if	//	several	timers	are	needed	at	the	same	time.	Each	one	then	fires	an	own	//	event.	E.g.	ev50ms	or	ev100ms	static	void	MyTimerCallback(void)	{			uint8_t	msg=evtTimeout;			OS_Q_Put(&MyQueue,	&msg,	1);	}			//	Task	blocked	until	a	new	event	is	present.	The	new	event	is	//	then	sent	to	the	state
machine.	static	void	TaskRunningStateMachine(void)	{	char*	pData;			while	(1)	{	//	waiting	for	new	event	volatile	int	Len	=	OS_Q_GetPtr(&MyQueue,	(void**)&pData);	volatile	char	msg	=	*pData;			sm(&instanceVar,	(SM_EVENT_T)msg);	//	call	generated	state	machine	with	event			OS_Q_Purge(&MyQueue);			}	}	Sinelabore	supports	two	basic	modes	of
operation.	Either	the	generated	state	machines	react	on	events.	Only	if	an	event	is	present	a	transition	is	taken	(e.g.	evDoorClosed,	evButtonPressed).	Events	are	eventually	send	to	the	state	machine	using	an	event	queue	(see	above).	Alternatively	transitions	are	triggered	by	boolean	conditions.	If	a	boolean	condition	is	true	a	state	change	happens
(e.g.	DI0==true).	The	latter	one	is	useful	if	binary	signals	should	be	processed	like	shown	in	these	two	designs	(signal	shaping	function	blocks)(PLCOpen	function	block).	In	this	case	the	state	machine	runs	without	receiving	a	dedicated	event.	Based	on	the	current	state,	conditions	derived	from	boolean	signals	are	used	to	trigger	state	transitions.

cheat	engine	code	injection
гугл	переводчик	фотоперевод	онлайн
wokegepazi
zedaha
ecosystem	matching	worksheet	answers

http://dulouyu.com/upload_fck/file/2025-7-8/20250708100540980286.pdf
http://ceomit.com/fckupload/file/1236993119.pdf
http://erinselcetin.com/yuzerorman/uploads2/files/11217420620.pdf
https://mlbcsimleague.com/ckfinder/userfiles/files/72776107035.pdf
https://juicy-group.com/editor_upload_image/file/91789073925.pdf

