
	

https://modaloz.godoxevez.com/370997926375416365308237868950542508386477?nitakozufasojigomadowogifizososimijamaxosidinatiduf=padumibiwuzumexazufefolitututuvuzubajoxomatimemunelibewotetewekotegeperaxakeruvoxoxizivolovadexirexovenufuganapoxesunesebovikamudofanoredurezegiketemunarapemizofuvemubiregepepupikosenabinuzudorigamijid&utm_term=sql+query+documentation+best+practices&dujubefotemomitiganemozezoreguwasojosepalebibekonazenajavexawopilaniwi=zazagejerebezirulowapavopexujalejoburubewijidatejedebixanesovikobulemegelalivibetifuxukatakepefufazafekelatiwodogesuvineropirogu

Skip	to	main	content	Powered	by	AI	and	the	LinkedIn	community	SQL	queries	are	the	building	blocks	of	database	development,	but	they	can	also	become	complex,	messy,	and	hard	to	understand	over	time.	That's	why	documenting	and	commenting	your	SQL	queries	is	essential	for	maintainability	and	collaboration.	In	this	article,	you'll	learn	how	to
write	clear,	concise,	and	consistent	documentation	and	comments	for	your	SQL	queries,	using	some	best	practices	and	examples.	M365	Architect/Developer	|	Microsoft	Power	Platform,	Databases	I	put	a	comment	line	before	a	functional	block	and	information	load	by	my	naming	conventions.	Also,	use	line	breaks	to	separate	these	functional	blocks.	2
We	have	a	template	for	our	stored	procedures	and	have	a	comment	block	at	the	top	to	store	change	history.	/*************	--#region	Header	--	--	Author	:	Your	Name	--	Name	:	dbo.DemoProcedure	--	Create	Date	:	26APR2023	--	Description	:	Description	of	the	SP	--	Example	:	EXECUTE
dbo.DemoProcedure;	--	Called	By	:	--	--	Revision	Author	JIRA	Description	--	--	26APR2023	Your	Name	JIRA	TICKET	Created	--	--#endregion	Header	*************/	1	Applications	Analyst	In	my	experience,	as	we	re-organize	our	departments,	documenting
and	commenting	as	we	write	SQL	queries	helps	alleviate	some	of	the	stress	when	other	developers	pick	up	SQL	queries	from	other	teams.	Comments	are	a	way	to	add	internal	notes	or	annotations	to	SQL	queries	to	explain	or	clarify	the	code.	Headers	can	provide	an	overview	of	the	query,	such	as	its	name,	author,	date,	description,	parameters,	and
output.	Inline	comments	can	explain	individual	lines	or	sections	of	the	query,	while	block	comments	can	explain	larger	chunks	or	blocks.	Different	syntaxes	and	styles	may	be	used	depending	on	the	SQL	dialect	and	preferences;	some	of	the	most	common	are	single-line	comments	starting	with	--	or	//	and	multi-line	comments	starting	with	/*	and	ending
with	*/.	It	is	important	to	write	comments	that	are	clear,	concise,	and	consistent.	Applications	Analyst	One	thing	we	have	found	helpful	is	to	have	a	comment	box	at	the	top	of	each	query	/***	***/	with	our	overview	data.	Then	throughout	the	query	we	use	clear,	concise,	and	consistent	comments	after	the	line	of	code	using	--	to	being	the	comments.	This
allows	the	developer	to	read	the	query	and	understand	it	better	instead	of	trying	to	remember	what	the	overview	data	said	100's	of	lines	up.	To	ensure	your	documentation	and	comments	are	effective	and	useful,	it	is	important	to	follow	certain	best	practices.	This	includes	documenting	and	commenting	your	SQL	queries	as	you	write	them,	not	after,
with	the	intention	of	benefiting	others.	Additionally,	the	level	of	detail	should	be	appropriate,	using	standard	terminology	and	formats,	as	well	as	proper	grammar,	spelling,	and	punctuation.	Additionally,	consistent	naming	and	formatting	conventions	should	be	used,	rather	than	random	or	mixed	ones.	Documentation	and	comments	are	not	static,	but
dynamic.	To	ensure	they	remain	up-to-date	and	accurate,	they	must	be	reviewed	and	improved	regularly	to	reflect	any	changes	or	updates	in	your	SQL	queries	and	database.	This	can	involve	checking	for	accuracy,	completeness,	and	relevance;	deleting	or	revising	any	outdated,	redundant,	or	misleading	documentation	and	comments;	and	seeking
feedback	from	peers,	clients,	or	users.	Additionally,	there	are	tools	and	techniques	available	to	automate	or	simplify	your	documentation	and	comments.	Applications	Analyst	We	are	implementing	yearly	reviews	with	our	developer	teams	and	our	systems	analysts	to	work	together	to	make	sure	we	stay	up	to	date.	This	is	a	space	to	share	examples,
stories,	or	insights	that	don’t	fit	into	any	of	the	previous	sections.	What	else	would	you	like	to	add?	A	lot	of	times	we	collaborate	with	our	teammates	to	modify	SQL	objects	like	stored	procedures,	functions	or	views	and	release	the	new	SQL	scripts	in	an	agile	fashion	through	sprint	cycles.	In	order	to	maintain	the	version	history	of	the	SQL	object	and
to	avoid	re-compiling	an	older	version	of	an	object	in	the	production	environment,	it's	imperative	to	maintain	a	SQL	Log	on	top	of	a	stored	procedure,	view	or	any	other	SQL	object.	SQL	log	can	be	a	multi-line	comment	that	can	be	something	like	this:	/*	[Log]	Date:	Modified	by:	Change:	*/	Incrementing	this	log	on	top	of	a	SQL	object	like	stored
procedure	or	function	can	help	other	team	mates	to	check	what	was	the	last	operation	performed	on	the	object	and	also	maintain	a	change	history.	4	Like	Celebrate	Support	Love	Insightful	Funny	24	7	Contributions	Documenting	SQL	code	is	essential	for	maintaining	clarity	and	understanding	in	database	development.	By	adding	comments	and
descriptions	within	the	SQL	code,	programmers	can	effectively	communicate	the	purpose,	logic,	and	functionality	of	the	queries	and	scripts.	In	this	guide,	we	will	explore	the	importance	of	documenting	SQL	code	and	provide	practical	tips	on	how	to	effectively	document	your	database	scripts	to	enhance	readability	and	facilitate	collaboration	among
team	members.	Documenting	SQL	code	is	a	crucial	practice	that	every	database	developer	and	administrator	should	adopt.	Proper	documentation	not	only	improves	code	maintainability	but	also	facilitates	collaboration	among	team	members.	In	this	guide,	we	will	explore	effective	techniques	on	how	to	document	SQL	code	in	a	way	that	is	clear,
concise,	and	beneficial	for	future	reference.	Why	is	SQL	Code	Documentation	Important?	Effective	SQL	code	documentation	serves	numerous	purposes:	Enhances	Readability:	Well-documented	code	is	easier	to	read	and	understand.	Facilitates	Collaboration:	Team	members	can	quickly	grasp	the	functionality	of	SQL	scripts.	Aids	in	Troubleshooting:
Clear	documentation	can	help	identify	issues	quickly.	Supports	Future	Development:	Code	changes	are	easier	when	intent	is	clear.	Best	Practices	for	Documenting	SQL	Code	1.	Use	Comments	Wisely	Comments	are	the	backbone	of	SQL	code	documentation.	Use	them	effectively:	Line	Comments:	Use	--	for	single	line	comments	to	explain	complex
logic.	Block	Comments:	Use	/…/	for	multi-line	comments	to	provide	detailed	explanations.	Example:	--	This	query	retrieves	all	orders	placed	in	the	last	month	SELECT	*	FROM	orders	WHERE	order_date	>	DATEADD(month,	-1,	GETDATE());	2.	Write	Meaningful	Names	for	Database	Objects	Choosing	meaningful	names	for	tables,	columns,	and
procedures	is	a	key	element	of	SQL	documentation.	Consider	the	following:	Tables:	Use	clear,	descriptive	names	like	customer_orders	instead	of	cryptic	abbreviations.	Columns:	Name	columns	based	on	their	content,	such	as	order_total	rather	than	tot.	Stored	Procedures:	Use	action-oriented	names,	for	example,	GetCustomerOrders.	3.	Create	a
README	File	For	larger	projects,	consider	creating	a	README	file	that	outlines	the	purpose,	structure,	and	usage	of	your	SQL	code.	Include:	Project	Overview:	A	brief	summary	of	the	project’s	functionality.	Installation	Instructions:	How	to	set	up	the	database	and	run	the	SQL	scripts.	Usage	Guidelines:	Examples	of	how	to	use	the	stored	procedures
and	functions.	4.	Document	Your	SQL	Queries	When	writing	queries,	especially	complex	ones,	provide	context:	/*	*	This	query	calculates	the	average	order	value	per	customer	*	for	those	who	have	placed	more	than	5	orders.	*/	SELECT	customer_id,	AVG(order_value)	AS	avg_order_value	FROM	orders	GROUP	BY	customer_id	HAVING
COUNT(order_id)	>	5;	5.	Maintain	Version	Control	Using	a	version	control	system	such	as	Git	allows	you	to	track	changes	in	your	SQL	code.	Make	sure	to	document:	Change	Descriptions:	Explain	what	was	altered	and	why.	Version	History:	Include	a	version	number	or	date	in	your	comments.	6.	Include	Examples	Incorporate	examples	within	your
documentation.	This	helps	users	understand	how	to	implement	your	SQL	queries	effectively:	Example:	--	Example	of	using	the	GetCustomerOrders	stored	procedure	EXEC	GetCustomerOrders	@CustomerId	=	123;	7.	Use	a	Consistent	Formatting	Style	Maintain	consistency	in	your	coding	style	and	documentation.	This	includes:	Indentation:	Use
consistent	indentation	for	readability.	Capitalization:	Use	uppercase	for	SQL	keywords	(e.g.,	SELECT,	FROM,	WHERE).	Whitespace:	Employ	whitespace	judiciously	for	clarity.	8.	Log	All	Changes	and	Updates	It’s	essential	to	log	any	changes	or	updates	to	your	SQL	code.	This	log	can	include:	Date	of	Change:	When	the	modification	occurred.	Author:
Who	made	the	change.	Description:	What	was	changed	and	why.	9.	Use	Tools	for	Automated	Documentation	Consider	leveraging	tools	that	can	help	automate	documentation	processes:	SQL	Documentation	Generators:	Tools	like	DBDoc	or	Dataedo	can	automate	documentation.	Code	Comments	Plugins:	Integrated	development	environments	(IDEs)
often	have	plugins	available	for	enhanced	commenting	features.	Common	Mistakes	to	Avoid	in	SQL	Documentation	1.	Over-Commenting	While	comments	are	important,	too	much	commentary	can	clutter	your	code.	Aim	for	balance—comment	on	complex	sections	but	avoid	stating	the	obvious:	SELECT	*	FROM	employees;	--	Selects	all	employees	(Too
obvious	comment)	2.	Neglecting	the	Alignment	with	Business	Logic	Ensure	that	your	SQL	code	documentation	aligns	with	the	intended	business	logic.	This	provides	context	that	enhances	understanding	for	stakeholders.	3.	Failing	to	Update	Documentation	Documentation	must	evolve	alongside	your	code.	Always	update	your	documentation	when
changes	are	made	to	the	SQL	logic	or	structure.	By	following	the	best	practices	outlined	in	this	guide,	you	can	significantly	enhance	the	quality	of	your	SQL	code	documentation.	Implementing	thorough,	meaningful,	and	clear	documentation	not	only	aids	your	current	projects	but	also	sets	a	standard	for	future	developments.	With	the	right	practices	in
place,	you	will	ensure	that	your	SQL	code	is	accessible,	maintainable,	and	efficient	for	years	to	come.	Documenting	SQL	code	is	essential	for	ensuring	clear	communication,	maintaining	code	quality,	and	facilitating	collaboration	among	team	members.	By	following	best	practices	and	consistently	annotating	your	code	with	relevant	comments	and
explanations,	you	can	improve	readability	and	make	it	easier	for	others	to	understand	and	work	with	your	SQL	scripts.	Taking	the	time	to	properly	document	your	SQL	code	is	a	valuable	investment	that	can	save	time	and	prevent	errors	in	the	long	run.	Data	analysis	involves	analyzing	and	deriving	insights	from	large	volumes	of	data.	SQL	(Structured
Query	Language)	is	the	most	popular	and	powerful	tool	used	to	retrieve	these	insights	(e.g.,	select)	and	manipulate	data	(e.g.,	update	or	delete).	Businesses	can	make	better-informed	decisions	by	understanding	the	patterns,	trends,	and	insights	data	analysts	present.	So,	It	is	crucial	to	write	SQL	queries	that	are	easy	to	read	and	understand	for
accuracy,	maintainability,	and	efficiency.This	blog	post	will	explore	ten	best	practices	for	writing	SQL	queries	for	data	analysis.	We	will	also	go	through	some	examples	to	make	the	concepts	clear	and	easy	to	follow.1.	Use	Meaningful	Alias	NamesA	key	principle	of	writing	clean	SQL	queries	is	using	meaningful	aliases	for	tables	and	columns.	This
practice	improves	query	readability	and	helps	others	understand	your	code	more	easily.--	Column	AliasesSELECT	orders.order_id	AS	order_number,	customers.customer_name	AS	customer_nameFROM	ordersJOIN	customers	ON	orders.customer_id	=	customers.customer_id;--Table	Aliases	SELECT	e1.employee_name	AS	employee_name,
e2.employee_name	AS	manager_nameFROM	employees	employeesLEFT	JOIN	employees	managers	ON	employees.manager_id	=	managers.employee_id;2.	Avoid	Using	SELECT	*It's	best	to	specify	columns	you	need	explicitly	instead	of	using	*,	as	this	can	result	in	unnecessary	data	transfer	and	slower	query	performance.SELECT	first_name,
last_name,	emailFROM	employees;3.	Use	Proper	Indentation	and	FormattingClear	and	consistent	indentation	and	formatting	improve	the	readability	and	maintainability	of	SQL	queries.	Properly	formatted	code	is	easier	to	understand	and	debug.SELECT	product_name,	category_name,	priceFROM	productsWHERE	price	>	50;4.	Avoid	Subqueries
When	PossibleIt	is	recommended	to	use	JOINs	instead	of	subqueries	for	better	performance	as	JOINs	can	be	optimized	more	effectively	by	the	database	engine.SELECT	customers.customer_nameFROM	customersJOIN	orders	ON	customers.customer_id	=	orders.customer_idWHERE	orders.order_date	>=	'2023-01-01';5.	Use	Indexes,
Partitioning/Bucketing	for	PerformanceTo	enhance	the	speed	of	your	query	execution,	it	is	recommended	to	index	the	columns	that	are	used	in	WHERE	clauses.	You	can	also	partition	your	data	based	on	your	access	patterns,	such	as	Order_date	or	event_date.	Indexes	can	significantly	improve	the	performance	of	your	queries,	particularly	for	large
volumes	of	data.CREATE	INDEX	idx_customer_id	ON	customers(customer_id);SELECT	customer_name,	customer_address	FROM	customers	WHERE	customers.customer_id	=	234567;6.	Use	Aggregate	FunctionsAggregating	data	using	functions	like	COUNT,	SUM,	and	AVG	is	essential	for	extracting	insights	such	as	total	order	amount	and	number	of
orders	placed.SELECT	category_name,	COUNT(*)	AS	product_countFROM	productsGROUP	BY	category_name;7.	Handle	NULL	ValuesNULL	values	can	create	problems	with	unexpected	behavior	in	your	SQLs.	Use	functions	like	COALESCE	or	NULLIF	to	handle	NULLs	effectively.SELECT	product_name,	COALESCE(discount,	0)	AS	discountFROM
products;If	the	“discount”	column	contains	NULL	values	(i.e.,	no	discount	is	specified	for	a	product),	it	replaces	those	NULL	values	with	0	(zero)	using	the	COALESCE	function8.	Use	Comments	for	DocumentationComments	always	help	in	understanding	the	logic	behind	any	code	block.	Adding	appropriate	comments	to	complex	or	unusual	queries	is
an	excellent	practice	for	documenting	logic	and	helping	team	members	understand	the	code	for	further	enhancements	or	modifications.--	Calculate	total	sales	for	the	year	2023SELECT	SUM(sales_amount)	AS	total_salesFROM	salesWHERE	YEAR(sales_date)	=	2023;9.	Avoid	Using	ORDER	BY	in	SubqueriesBoost	your	query	performance	by	avoiding
ORDER	BY	in	subqueries	unless	it's	absolutely	necessary.	This	can	help	save	valuable	resources	and	improve	the	overall	efficiency	of	your	query.--	InefficientSELECT	customer_idFROM	ordersWHERE	order_date	=	(SELECT	MAX(order_date)	FROM	orders);--	BetterSELECT	customer_idFROM	ordersORDER	BY	order_date	DESCLIMIT	1;The	first	SQL
query	uses	a	subquery	to	find	the	maximum	order	date	for	all	the	records	in	the	“orders”	table.	Then,	it	compares	this	date	with	each	order	date	in	the	main	query.	This	process	requires	sorting	the	entire	dataset	in	the	subquery,	which	can	be	computationally	expensive	and	utilize	a	lot	of	resources.10.	Test	Queries	Before	RunningIt	is	important	to
test	your	queries	with	a	limited	dataset	or	in	a	development	or	testing	environment	to	avoid	unintended	consequences	when	working	with	live	or	production	data.SELECT	columnsFROM	test_environment_db.customersWHERE	condition	=	'xyz';ConclusionIn	order	to	write	efficient,	readable,	and	maintainable	SQL	queries,	it’s	important	to	follow
certain	best	practices.	These	easy	and	simple	to	follow	best	practices	are	crucial	in	deriving	insights	from	data,	which	is	the	main	goal	of	data	analysis.	By	incorporating	these	practices	into	your	workflow,	you	can	streamline	your	data	analysis	processes	and	make	more	informed	decisions.	Let	me	know	what	other	best	practices	you	are	using	in	your
day-to-day	data	analysis	work.	In	this	article,	we	are	going	to	learn	some	best	practices	that	help	to	write	more	efficient	SQL	queries.	Introduction	Queries	are	used	to	communicate	with	the	databases	and	perform	the	database	operations.	Such	as,	we	use	the	queries	to	update	data	on	a	database	or	retrieve	data	from	the	database.	Because	of	these
functions	of	queries,	they	are	used	extensively	by	people	who	also	interact	with	databases.	In	addition	to	performing	accurate	database	operations,	a	query	also	needs	to	be	performance,	fast	and	readable.	At	least	knowing	some	practices	when	we	write	a	query	will	help	fulfill	these	criteria	and	improve	the	writing	of	more	efficient	queries.	Pre-
requisites	In	this	article’s	examples,	we	will	use	the	Adventureworks2019	sample	database.	Deciding	the	appropriate	SQL	editor	to	write	queries	Whatever	our	experience	in	writing	queries,	deciding	on	an	appropriate	editor	is	one	of	the	key	points	that	will	affect	our	productivity	because,	during	the	development	of	SQL	queries,	we	mostly	consume
our	time	in	the	SQL	editors.	Preference	of	the	SQL	editor	can	be	changed	from	person	to	person	but	before	to	decide	an	editor	checking	the	features	of	the	editor	and	looking	at	the	feature	comparison	with	its	competitors	will	help	to	decide	on	the	proper	editors.	In	this	context,	Microsoft	offers	two	different	tools	to	develop	queries:	Microsoft	SQL
Server	Management	Studio	(SSMS)	Azure	Data	Studio	These	two	tools	have	some	advantages	and	disadvantages,	but	the	main	advantage	of	the	Azure	Data	Studio	is	to	can	work	on	different	platforms	(Linux	and	macOS)	and	it	offers	a	more	user-friendly	user	interface	for	professionals	who	commonly	develop	queries.	At	the	same	time,	the	extensions
allow	us	to	add	new	features	to	it.	Despite	this,	SQL	Server	Management	Studio	helps	to	manage	and	maintain	the	database	administrators’	operation	more	easily	and	offers	a	more	advanced	SQL	query	development	environment.	So,	if	we	mostly	consume	our	time	developing	SQL	queries,	using	the	Azure	Data	Studio	can	be	more	reasonable.	Except
then	these	two	tools,	we	can	also	use	other	editors	which	are	developed	by	lots	of	vendors.	Best	Practice:	As	much	as	possible	as	a	preference	to	use	the	proper	editor	for	your	requirements	and	you	can	consider	using	either	3rd	party	add-ins	or	extensions	that	improve	the	capabilities	of	the	editors.	Avoid	using	the	asterisk	sign	(SELECT	*)	in	the
select	SQL	queries	Using	the	SELECT	*	statements	in	the	queries	may	cause	unexpected	results	and	issues	in	the	queries’	performance.	Using	an	asterisk	sign	in	a	query	causes	redundant	consumption	of	the	database	engine’s	resources	because	it	will	retrieve	all	columns	of	the	table.	In	particular,	using	SELECT	*	provokes	consuming	more	network
and	disk	resources.	Another	problem	with	using	the	SELECT	*	sign	is	to	be	facing	unexpected	result	sets	because:	Column	names	can	be	changed	New	columns	can	be	added	The	columns’	order	can	be	changed	To	prevent	these	types	of	problems,	we	need	to	explicitly	write	the	column	names	in	our	SQL	queries.	For	example,	the	following	query	will
retrieve	all	column	data	of	the	Employee	table.			SELECT	*	FROM	HumanResources.Employee	However,	we	can	transform	this	query	correctly	by	explicitly	defining	the	column	names	as	follows	and	including	only	the	columns	which	we	needed.	FROM	HumanResources.Employee	Using	the	SELECT	*	statement	will	cause	performance	problems.	Best
Practice:	Besides	getting	rid	of	SELECT	*	statements	and	using	the	column	names	explicitly	in	the	SQL	queries,	we	can	use	the	alias	names	for	the	tables	and	column	names.	This	usage	type	makes	our	queries	more	readable	and	easily	understandable.	SELECT	Emp.BusinessEntityID			AS	[Bussines	Entity	Id]					,	Emp.NationalIDNumber			AS	[National
Number]					,	Emp.JobTitle											AS	[Job	Title]					,	Emp.BirthDate										AS	[Birth	Date]					,	Emp.MaritalStatus						AS	[Martial	Status]					,	Emp.SickLeaveHours					AS	[Sick	Leave	Hours]FROM		HumanResources.Employee	Emp	Add	the	requisite	comments	to	the	SQL	queries	SQL	comments	are	the	plain	text	that	can	be	added	to	the	queries,	and	they
are	not	parsed	and	executed	by	the	query	engine.	Mostly,	we	use	the	comments	either	to	add	some	description	or	disable	some	code	blocks	of	the	queries.	However,	adding	brief	and	understandable	explanations	to	our	SQL	queries	is	one	best	practice	because,	over	time,	the	purpose	of	the	query	and	its	use	by	the	which	application	can	be	forgettable.
In	this	case,	the	process	of	maintaining	and	refactoring	the	query	will	be	a	bit	painful.	Single-line	comment:	To	change	a	line	as	a	comment,	we	can	add	the	two	dashes	(–)	at	the	beginning	of	the	query	line,	thus	this	line	color	will	be	changed,	and	these	lines	will	not	be	considered	by	the	query	engine.	--	This	query	returns	the	whole	employee
data		SELECT	Emp.BusinessEntityID		FROM	HumanResources.Employee	Emp	Multiple	line	comment:	By	placing	multiple	lines	inside	this	sign	()	block,	we	can	convert	them	into	multiple	comment	lines.			This	query	returns	the	whole	employee	data.		The	human	resource	portal	uses	this	query		SELECT		p.FirstName			AS	[First	Name]								,
p.LastName				AS	[Last	Name]								,	e.BirthDate			AS	[Birth	Date]		FROM	[HumanResources].[Employee]	e		INNER	JOIN	[Person].[Person]	AS	p						ON	p.[BusinessEntityID]	=	e.[BusinessEntityID]	Best	Practice:	As	possible	as	standardize	your	SQL	comments	and	add	all	short	information	that	you	required	according	to	your	development	process.	For
example,	you	can	use	the	following	template:	---##---Purpose:										Description	of	the	business/technical
details.																		You	can	use	multiple	lines	if	needed---	Jira	or	another	number--	01/01/0000		Developer	Name	full	name		--						A	comprehensive	description	of	the	changes.	The	description	may	use	as	---
##---	Consider	NULLable	columns	in	SQL	queries	A	NULL	value	in	a	row	specifies	an	unknown	value	and	this	value	does	not	point	to	a	zero	or	empty	value.	Because	of	this
particular	characteristic	of	the	NULL	value,	we	need	to	take	into	account	nullable	columns	in	the	queries.	Comparing	the	NULL	values:	When	we	either	filter	out	the	NULL	or	exclude	NULL	rows	in	a	query,	we	cannot	use	the	use	equality	operator	(=)	in	the	WHERE	clause.	The	proper	way	to	compare	the	NULL	values	is	to	use	IS	NULL	and	IS	NOT
NULL	operators.	For	example,	if	we	want	to	return	only	NULL	values	from	the	Address	table,	we	can	use	the	following	query:	SELECT				Address.AddressLine1	AS	[Adress	1]								,	Address.AddressLine2	AS	[Adress	2]FROM	Person.Address	AddressWHERE	Address.AddressLine2	IS	NULL	When	we	use	the	equality	operator	(=)	in	the	WHERE	clause,
we	do	not	get	the	appropriate	result	set.	SELECT				Address.AddressLine1	AS	[Adress	1]								,	Address.AddressLine2	AS	[Adress	2]FROM	Person.Address	AddressWHERE	Address.AddressLine2	=	NULL	COUNT()	function	and	NULLable	columns:	The	COUNT()	function	counts	and	returns	the	number	of	columns	from	the	query	result	set.	However,	the
COUNT(*)	function	counts	all	rows	of	the	query	resultset	but	if	we	replace	the	column	name	with	the	asterisk	sign	COUNT(column_name),	the	function	counts	only	the	non-null	values.	For	example	when	we	use	the	asterisk	(*)	for	the	COUNT	function	to	count	the	Employee	table	rows,	we	will	obtain	290.			SELECT	COUNT(*)	AS	[Number	of	the
Columns]		FROM	HumanResources.Employee	However,	if	we	use	the	column	name	instead	of	the	asterisk	sign	the	COUNT	function	returns	a	different	value.			SELECT	COUNT(OrganizationLevel)	AS	[Number	of	the	Columns]		FROM	HumanResources.Employee	Beautify	SQL	Queries	The	queries	which	we	write	will	never	remain	a	secret	and	will
need	to	be	reviewed	and	modified	by	us	or	by	other	developers	because	they	might	need	to	test,	fix	or	add	a	new	feature.	Because	of	this	case,	the	queries	we	write	should	be	as	understandable	and	easy	to	read	as	possible.	Following	the	suggestions	below	for	writing	more	readable	code	will	help	us	write	more	readable	code.	1-Format	SQL	Queries:
Formatting	the	queries	is	one	of	the	important	points	to	improve	the	readability	of	a	query.	A	well-formatted	query	always	significantly	improves	code	readability.	To	make	our	queries	more	readable,	we	can	take	advantage	of	online	query	formatting	tools	or	add-ins	(extensions).	For	example,	we	can	see	the	mess	and	complexity	of	the	following	query:
		DECLAre	@NewValue	as	varchar(100)declare	@I	AS	INT=0	if	OBJECT_ID(N'tempdb..#NewTempTable')is	nOT	NULL	BEgin	dROP			TABLE	#NewTempTable	END	CREATe	table	#NewTempTable(Id	inT,Column1	INT)		IF	@NewValue2aND	LEN(CreditCardApprovalCode)>10ORDer	by
conCAT(Substring(CarrierTrackingNumber,1,		4),Substring(p.Class,1,4)),ProductID	desc	end			SELECT	Id	AS	[Product	Id]	FROM	#NewTempTable	Now,	we	will	format	this	code	through	the	Poor	SQL	format	and	we	can	see	the	stunning	change	in	the	query,	or	you	can	choose	the	formatter	that	suits	your	needs.			DECLARE	@NewValue	AS
VARCHAR(100)		IF	OBJECT_ID(N'tempdb..#NewTempTable')	IS	NOT	NULL		CREATE	TABLE	#NewTempTable	(INSERT	INTO	#NewTempTable										,	s.CarrierTrackingNumber										,	h.CreditCardApprovalCode										,	dbo.[ufnGetStock](p.ProductID)	AS	Stock														WHEN	AccountNumber	LIKE
'10%'														Substring(CarrierTrackingNumber,	1,	4)														,	Substring(p.Class,	1,	4)						FROM	Sales.SalesOrderDetailEnlarged	s						INNER	JOIN	Production.Product	p										ON	s.ProductID	=	p.ProductID						INNER	JOIN	Sales.SalesOrderHeaderEnlarged	h										ON	h.SalesOrderID	=	s.SalesOrderID										AND	LEN(CreditCardApprovalCode)	>
10														Substring(CarrierTrackingNumber,	1,	4)														,	Substring(p.Class,	1,	4)		SELECT	Id	AS	[Product	Id]	2-Use	aliases	for	the	column	and	table	names:	We	can	use	the	alias	to	rename	the	column	and	table	names	so	that	we	can	make	them	more	readable.	For	example,	in	the	following	example,	the	query	does	not	use	table	and	column	allies
for	this	reason	it	seems	messy	and	difficult	to	read.			SELECT	Product.ProductID,	Product.Name	,		WorkOrder.WorkOrderID	,WorkOrderRouting.ActualCost,WorkOrder.StockedQty		from	Production.WorkOrder			Production.WorkOrderRouting	on	Production.WorkOrder.WorkOrderID	=	Production.WorkOrderRouting.WorkOrderID		INNER	JOIN
Production.Product	ON	Production.Product.ProductID	=	Production.WorkOrder.ProductID	Now,	we	will	use	aliases	for	the	column	names	and	table	names	to	further	format	it.	SELECT		Product.ProductID						AS	[Product	Id]		,	Product.Name											AS	[Product	Name]		,	WorkOrder.WorkOrderID		AS	[WorkOrder	Id]		,	Routing.ActualCost					AS	[Actual
Cost]		,	WorkOrder.StockedQty			AS	[Stocked	Quantity]FROM	Production.WorkOrder	WorkOrderINNER	JOIN	Production.WorkOrderRouting	RoutingON	WorkOrder.WorkOrderID	=	Routing.WorkOrderIDINNER	JOIN	Production.Product	ProductON	Product.ProductID	=	WorkOrder.ProductID	As	we	can	see	there	is	a	noticeable	readability
improvement	after	using	and	formatting	the	query.	Best	Practice:	If	you	want	to	write	more	readable	and	understandable	queries:	Use	understandable	aliases	for	the	table	names	Add	brief	comments	to	queries	Consider	using	Common	Table	Expressions	(CTE)	in	your	complex	queries	Variable	names	should	be	clear	and	concise	Format	the	queries
before	deploying	Summary	In	this	article,	we	learned	some	best	practices	that	help	to	improve	the	quality	of	SQL	queries.	Well-formatted,	more	readable,	and	performant	queries	will	always	help	us	or	another	person	who	needs	to	review	or	modify	the	queries.	168	Views	Advanced	SQL	Interviews	don't	just	test	you	on	correctness	–	they	often	check
out	your	SQL	coding	style	too,	especially	during	take-home	SQL	challenges.	Usually,	they	are	checking	to	see	if	you	follow	SQL	coding	conventions	that	result	in	readable	and	maintainable	SQL	queries.	That's	why	in	this	tutorial,	we're	going	to	teach	you	these	8	SQL	query	best	practices:	Uppercase	for	Keywords	Lowercase	or	Snake	Case	for	Names
Descriptive	and	Concise	Aliases	Consistent	Formatting	and	Indentation	Avoid	Writing	SELECT	*	Use	JOINs	Explicitly	for	Clarity	Format	Dates	Consistently	Comment	Wisely	Let’s	start	with	the	basic:	Use	uppercase	for	the	SQL	keywords	and	functions.	It	makes	your	queries	clearer.	Avoid	writing	it	like	this:	Instead,	opt	for	this	format:	When	it	comes
to	naming	things	like	schemas,	tables,	and	columns,	go	for	lowercase	or	snake	case	(using	underscores)	-	it's	a	widely	adopted	convention	in	programming	languages!	For	example,	instead	of:	Choose	this	format:		Our	Suggestions:	While	some	prefer	variations	to	distinguish	schemas,	tables,	and	columns,	adhering	to	snake	case	is	recommended.
Remember,	consistency	matters,	so	consult	your	team's	conventions	for	optimal	harmony.	Make	your	queries	easy	to	read	by	using	short	and	meaningful	names	for	tables,	columns,	and	expressions,	and	avoid	the	need	for	lengthy	or	ambiguous	names.	Avoid	this	approach:	Instead,	use	this	technique:		SQL	Writing	101:	Use	the	"AS"	keyword	when
assigning	aliases	to	enhance	visibility	for	new	column	or	table	names.	For	calculated	columns,	choose	meaningful	names	that	reflects	their	purpose	to	ensure	newcomes	to	the	query	can	easily	understand	what's	being	calculated.	Want	your	queries	to	be	easier	on	the	eyes?	Keep	your	formatting	consistent.	Use	spaces	or	tabs	throughout,	and	things
will	look	neater.	For	example,	avoid	this:	Instead,	write	like	this:		A	little	tip:	You	can	also	use	a	code	formatter	tool	to	automatically	apply	a	style	to	your	code.	Don't	use	in	your	queries.	Instead,	explicitly	list	the	columns	you	need.	This	improves	query	performance	and	makes	the	query	more	readable.	Don't	write	like	this:	Instead,	dothis:		SQL	Writing
101:	If	you're	new	to	a	table	and	want	to	see	every	column,	add	a	clause	to	reduce	the	number	of	rows	being	generated:	Make	your	queries	more	readable	by	using	simple	names	and	combining	data	from	different	tables	with	s.	Avoid	doing	it	like	this:	Instead,	opt	for	this	format:	Be	clear	about	your	JOIN	types	(,	,	,	etc.)	to	improve	query	clarity.
Instead	of	being	vague	like	this:	Specify	the	JOIN	type:	Use	a	consistent	date	format	to	prevent	ambiguity.	Avoid	this:	Instead,	use	a	consistent	format	(assuming	'YYYY-MM-DD'	format):	Use	comments	to	explain	your	queries,	but	avoid	writing	long	ones	between	queries.	Briefly	explain	each	step	for	clarity.	You	can	use	to	write	single-line	comments	in
SQL.	Here's	an	example	of	not-so-helpful	comment:	Instead,	write	a	useful	comment:		A	tip	to	remember:	Use	for	longer	comments	and	make	sure	they	add	valuable	insights.	By	following	these	tips,	your	queries	will	be	easier	to	understand,	maintain,	and	work	with!	In	the	next	tutorial,	we'll	change	gears,	and	cover	how	to	pivot	and	unpivot	in	SQL
(similar	to	how	PIOVT	works	in	Excel).	Have	no	clue	what	we're	dtalking	about?	No	problem!	Next	Tutorial:	Pivoting	&	Un-Pivoting	in	SQL	You	can	use	this	set	of	guidelines,	fork	them	or	make	your	own	-	the	key	here	is	that	you	pick	a	style	and	stick	to	it.	To	suggest	changes	or	fix	bugs	please	open	an	issue	or	pull	request	on	GitHub.	These	guidelines
are	designed	to	be	compatible	with	Joe	Celko’s	SQL	Programming	Style	book	to	make	adoption	for	teams	who	have	already	read	that	book	easier.	This	guide	is	a	little	more	opinionated	in	some	areas	and	in	others	a	little	more	relaxed.	It	is	certainly	more	succinct	where	Celko’s	book	contains	anecdotes	and	reasoning	behind	each	rule	as	thoughtful
prose.	It	is	easy	to	include	this	guide	in	Markdown	format	as	a	part	of	a	project’s	code	base	or	reference	it	here	for	anyone	on	the	project	to	freely	read—much	harder	with	a	physical	book.	SQL	style	guide	by	Simon	Holywell	is	licensed	under	a	Creative	Commons	Attribution-ShareAlike	4.0	International	License.	Based	on	a	work	at	.	General	Do	Use
consistent	and	descriptive	identifiers	and	names.	Make	judicious	use	of	white	space	and	indentation	to	make	code	easier	to	read.	Store	ISO	8601	compliant	time	and	date	information	(YYYY-MM-DDTHH:MM:SS.SSSSS).	Try	to	only	use	standard	SQL	functions	instead	of	vendor-specific	functions	for	reasons	of	portability.	Keep	code	succinct	and	devoid
of	redundant	SQL—such	as	unnecessary	quoting	or	parentheses	or	WHERE	clauses	that	can	otherwise	be	derived.	Include	comments	in	SQL	code	where	necessary.	Use	the	C	style	opening	/*	and	closing	*/	where	possible	otherwise	precede	comments	with	--	and	finish	them	with	a	new	line.	SELECT	file_hash	--	stored	ssdeep	hash	FROM	file_system
WHERE	file_name	=	'.vimrc';	/*	Updating	the	file	record	after	writing	to	the	file	*/	UPDATE	file_system	SET	file_modified_date	=	'1980-02-22	13:19:01.00000',	file_size	=	209732	WHERE	file_name	=	'.vimrc';	Avoid	camelCase—it	is	difficult	to	scan	quickly.	Descriptive	prefixes	or	Hungarian	notation	such	as	sp_	or	tbl.	Plurals—use	the	more	natural
collective	term	where	possible	instead.	For	example	staff	instead	of	employees	or	people	instead	of	individuals.	Quoted	identifiers—if	you	must	use	them	then	stick	to	SQL-92	double	quotes	for	portability	(you	may	need	to	configure	your	SQL	server	to	support	this	depending	on	vendor).	Object-oriented	design	principles	should	not	be	applied	to	SQL	or
database	structures.	Naming	conventions	General	Ensure	the	name	is	unique	and	does	not	exist	as	a	reserved	keyword.	Keep	the	length	to	a	maximum	of	30	bytes—in	practice	this	is	30	characters	unless	you	are	using	a	multi-byte	character	set.	Names	must	begin	with	a	letter	and	may	not	end	with	an	underscore.	Only	use	letters,	numbers	and
underscores	in	names.	Avoid	the	use	of	multiple	consecutive	underscores—these	can	be	hard	to	read.	Use	underscores	where	you	would	naturally	include	a	space	in	the	name	(first	name	becomes	first_name).	Avoid	abbreviations	and	if	you	have	to	use	them	make	sure	they	are	commonly	understood.	SELECT	first_name	FROM	staff;	Tables	Use	a
collective	name	or,	less	ideally,	a	plural	form.	For	example	(in	order	of	preference)	staff	and	employees.	Do	not	prefix	with	tbl	or	any	other	such	descriptive	prefix	or	Hungarian	notation.	Never	give	a	table	the	same	name	as	one	of	its	columns	and	vice	versa.	Avoid,	where	possible,	concatenating	two	table	names	together	to	create	the	name	of	a
relationship	table.	Rather	than	cars_mechanics	prefer	services.	Columns	Always	use	the	singular	name.	Where	possible	avoid	simply	using	id	as	the	primary	identifier	for	the	table.	Do	not	add	a	column	with	the	same	name	as	its	table	and	vice	versa.	Always	use	lowercase	except	where	it	may	make	sense	not	to	such	as	proper	nouns.	Aliasing	or
correlations	Should	relate	in	some	way	to	the	object	or	expression	they	are	aliasing.	As	a	rule	of	thumb	the	correlation	name	should	be	the	first	letter	of	each	word	in	the	object’s	name.	If	there	is	already	a	correlation	with	the	same	name	then	append	a	number.	Always	include	the	AS	keyword—makes	it	easier	to	read	as	it	is	explicit.	For	computed
data	(SUM()	or	AVG())	use	the	name	you	would	give	it	were	it	a	column	defined	in	the	schema.	SELECT	first_name	AS	fn	FROM	staff	AS	s1	JOIN	students	AS	s2	ON	s2.mentor_id	=	s1.staff_num;	SELECT	SUM(s.monitor_tally)	AS	monitor_total	FROM	staff	AS	s;	Stored	procedures	The	name	must	contain	a	verb.	Do	not	prefix	with	sp_	or	any	other	such
descriptive	prefix	or	Hungarian	notation.	Uniform	suffixes	The	following	suffixes	have	a	universal	meaning	ensuring	the	columns	can	be	read	and	understood	easily	from	SQL	code.	Use	the	correct	suffix	where	appropriate.	_id—a	unique	identifier	such	as	a	column	that	is	a	primary	key.	_status—flag	value	or	some	other	status	of	any	type	such	as
publication_status.	_total—the	total	or	sum	of	a	collection	of	values.	_num—denotes	the	field	contains	any	kind	of	number.	_name—signifies	a	name	such	as	first_name.	_seq—contains	a	contiguous	sequence	of	values.	_date—denotes	a	column	that	contains	the	date	of	something.	_tally—a	count.	_size—the	size	of	something	such	as	a	file	size	or
clothing.	_addr—an	address	for	the	record	could	be	physical	or	intangible	such	as	ip_addr.	Query	syntax	Reserved	words	Always	use	uppercase	for	the	reserved	keywords	like	SELECT	and	WHERE.	It	is	best	to	avoid	the	abbreviated	keywords	and	use	the	full	length	ones	where	available	(prefer	ABSOLUTE	to	ABS).	Do	not	use	database	server	specific
keywords	where	an	ANSI	SQL	keyword	already	exists	performing	the	same	function.	This	helps	to	make	the	code	more	portable.	SELECT	model_num	FROM	phones	AS	p	WHERE	p.release_date	>	'2014-09-30';	White	space	To	make	the	code	easier	to	read	it	is	important	that	the	correct	complement	of	spacing	is	used.	Do	not	crowd	code	or	remove
natural	language	spaces.	Spaces	Spaces	should	be	used	to	line	up	the	code	so	that	the	root	keywords	all	end	on	the	same	character	boundary.	This	forms	a	river	down	the	middle	making	it	easy	for	the	readers	eye	to	scan	over	the	code	and	separate	the	keywords	from	the	implementation	detail.	Rivers	are	bad	in	typography,	but	helpful	here.	(SELECT
f.species_name,	AVG(f.height)	AS	average_height,	AVG(f.diameter)	AS	average_diameter	FROM	flora	AS	f	WHERE	f.species_name	=	'Banksia'	OR	f.species_name	=	'Sheoak'	OR	f.species_name	=	'Wattle'	GROUP	BY	f.species_name,	f.observation_date)	UNION	ALL	(SELECT	b.species_name,	AVG(b.height)	AS	average_height,	AVG(b.diameter)	AS
average_diameter	FROM	botanic_garden_flora	AS	b	WHERE	b.species_name	=	'Banksia'	OR	b.species_name	=	'Sheoak'	OR	b.species_name	=	'Wattle'	GROUP	BY	b.species_name,	b.observation_date);	Notice	that	SELECT,	FROM,	etc.	are	all	right	aligned	while	the	actual	column	names	and	implementation-specific	details	are	left	aligned.	Although	not
exhaustive	always	include	spaces:	before	and	after	equals	(=)	after	commas	(,)	surrounding	apostrophes	(')	where	not	within	parentheses	or	with	a	trailing	comma	or	semicolon.	SELECT	a.title,	a.release_date,	a.recording_date	FROM	albums	AS	a	WHERE	a.title	=	'Charcoal	Lane'	OR	a.title	=	'The	New	Danger';	Line	spacing	Always	include
newlines/vertical	space:	before	AND	or	OR	after	semicolons	to	separate	queries	for	easier	reading	after	each	keyword	definition	after	a	comma	when	separating	multiple	columns	into	logical	groups	to	separate	code	into	related	sections,	which	helps	to	ease	the	readability	of	large	chunks	of	code.	Keeping	all	the	keywords	aligned	to	the	righthand	side
and	the	values	left	aligned	creates	a	uniform	gap	down	the	middle	of	the	query.	It	also	makes	it	much	easier	to	to	quickly	scan	over	the	query	definition.	INSERT	INTO	albums	(title,	release_date,	recording_date)	VALUES	('Charcoal	Lane',	'1990-01-01	01:01:01.00000',	'1990-01-01	01:01:01.00000'),	('The	New	Danger',	'2008-01-01	01:01:01.00000',
'1990-01-01	01:01:01.00000');	UPDATE	albums	SET	release_date	=	'1990-01-01	01:01:01.00000'	WHERE	title	=	'The	New	Danger';	SELECT	a.title,	a.release_date,	a.recording_date,	a.production_date	--	grouped	dates	together	FROM	albums	AS	a	WHERE	a.title	=	'Charcoal	Lane'	OR	a.title	=	'The	New	Danger';	Indentation	To	ensure	that	SQL	is
readable	it	is	important	that	standards	of	indentation	are	followed.	Joins	Joins	should	be	indented	to	the	other	side	of	the	river	and	grouped	with	a	new	line	where	necessary.	SELECT	r.last_name	FROM	riders	AS	r	INNER	JOIN	bikes	AS	b	ON	r.bike_vin_num	=	b.vin_num	AND	b.engine_tally	>	2	INNER	JOIN	crew	AS	c	ON	r.crew_chief_last_name	=
c.last_name	AND	c.chief	=	'Y';	The	exception	to	this	is	when	using	just	the	JOIN	keyword	where	it	should	be	before	the	river.	SELECT	r.last_name	FROM	riders	AS	r	JOIN	bikes	AS	b	ON	r.bike_vin_num	=	b.vin_num	Subqueries	should	also	be	aligned	to	the	right	side	of	the	river	and	then	laid	out	using	the	same	style	as	any	other	query.	Sometimes	it
will	make	sense	to	have	the	closing	parenthesis	on	a	new	line	at	the	same	character	position	as	its	opening	partner—this	is	especially	true	where	you	have	nested	subqueries.	SELECT	r.last_name,	(SELECT	MAX(YEAR(championship_date))	FROM	champions	AS	c	WHERE	c.last_name	=	r.last_name	AND	c.confirmed	=	'Y')	AS	last_championship_year
FROM	riders	AS	r	WHERE	r.last_name	IN	(SELECT	c.last_name	FROM	champions	AS	c	WHERE	YEAR(championship_date)	>	'2008'	AND	c.confirmed	=	'Y');	Preferred	formalisms	Make	use	of	BETWEEN	where	possible	instead	of	combining	multiple	statements	with	AND.	Similarly	use	IN()	instead	of	multiple	OR	clauses.	Where	a	value	needs	to	be
interpreted	before	leaving	the	database	use	the	CASE	expression.	CASE	statements	can	be	nested	to	form	more	complex	logical	structures.	Avoid	the	use	of	UNION	clauses	and	temporary	tables	where	possible.	If	the	schema	can	be	optimised	to	remove	the	reliance	on	these	features	then	it	most	likely	should	be.	SELECT	CASE	postcode	WHEN	'BN1'
THEN	'Brighton'	WHEN	'EH1'	THEN	'Edinburgh'	END	AS	city	FROM	office_locations	WHERE	country	=	'United	Kingdom'	AND	opening_time	BETWEEN	8	AND	9	AND	postcode	IN	('EH1',	'BN1',	'NN1',	'KW1');	Create	syntax	When	declaring	schema	information	it	is	also	important	to	maintain	human-readable	code.	To	facilitate	this	ensure	that	the
column	definitions	are	ordered	and	grouped	together	where	it	makes	sense	to	do	so.	Indent	column	definitions	by	four	(4)	spaces	within	the	CREATE	definition.	Choosing	data	types	Where	possible	do	not	use	vendor-specific	data	types—these	are	not	portable	and	may	not	be	available	in	older	versions	of	the	same	vendor’s	software.	Only	use	REAL	or
FLOAT	types	where	it	is	strictly	necessary	for	floating	point	mathematics	otherwise	prefer	NUMERIC	and	DECIMAL	at	all	times.	Floating	point	rounding	errors	are	a	nuisance!	Specifying	default	values	The	default	value	must	be	the	same	type	as	the	column—if	a	column	is	declared	a	DECIMAL	do	not	provide	an	INTEGER	default	value.	Default	values
must	follow	the	data	type	declaration	and	come	before	any	NOT	NULL	statement.	Constraints	and	keys	Constraints	and	their	subset,	keys,	are	a	very	important	component	of	any	database	definition.	They	can	quickly	become	very	difficult	to	read	and	reason	about	though	so	it	is	important	that	a	standard	set	of	guidelines	are	followed.	Choosing	keys
Deciding	the	column(s)	that	will	form	the	keys	in	the	definition	should	be	a	carefully	considered	activity	as	it	will	effect	performance	and	data	integrity.	The	key	should	be	unique	to	some	degree.	Consistency	in	terms	of	data	type	for	the	value	across	the	schema	and	a	lower	likelihood	of	this	changing	in	the	future.	Can	the	value	be	validated	against	a
standard	format	(such	as	one	published	by	ISO)?	Encouraging	conformity	to	point	2.	Keeping	the	key	as	simple	as	possible	whilst	not	being	scared	to	use	compound	keys	where	necessary.	It	is	a	reasoned	and	considered	balancing	act	to	be	performed	at	the	definition	of	a	database.	Should	requirements	evolve	in	the	future	it	is	possible	to	make
changes	to	the	definitions	to	keep	them	up	to	date.	Defining	constraints	Once	the	keys	are	decided	it	is	possible	to	define	them	in	the	system	using	constraints	along	with	field	value	validation.	General	Tables	must	have	at	least	one	key	to	be	complete	and	useful.	Constraints	should	be	given	a	custom	name	excepting	UNIQUE,	PRIMARY	KEY	and
FOREIGN	KEY	where	the	database	vendor	will	generally	supply	sufficiently	intelligible	names	automatically.	Layout	and	order	Specify	the	primary	key	first	right	after	the	CREATE	TABLE	statement.	Constraints	should	be	defined	directly	beneath	the	column	they	correspond	to.	Indent	the	constraint	so	that	it	aligns	to	the	right	of	the	column	name.	If	it
is	a	multi-column	constraint	then	consider	putting	it	as	close	to	both	column	definitions	as	possible	and	where	this	is	difficult	as	a	last	resort	include	them	at	the	end	of	the	CREATE	TABLE	definition.	If	it	is	a	table-level	constraint	that	applies	to	the	entire	table	then	it	should	also	appear	at	the	end.	Use	alphabetical	order	where	ON	DELETE	comes
before	ON	UPDATE.	If	it	make	senses	to	do	so	align	each	aspect	of	the	query	on	the	same	character	position.	For	example	all	NOT	NULL	definitions	could	start	at	the	same	character	position.	This	is	not	hard	and	fast,	but	it	certainly	makes	the	code	much	easier	to	scan	and	read.	Validation	Use	LIKE	and	SIMILAR	TO	constraints	to	ensure	the	integrity
of	strings	where	the	format	is	known.	Where	the	ultimate	range	of	a	numerical	value	is	known	it	must	be	written	as	a	range	CHECK()	to	prevent	incorrect	values	entering	the	database	or	the	silent	truncation	of	data	too	large	to	fit	the	column	definition.	In	the	least	it	should	check	that	the	value	is	greater	than	zero	in	most	cases.	CHECK()	constraints
should	be	kept	in	separate	clauses	to	ease	debugging.	Example	CREATE	TABLE	staff	(PRIMARY	KEY	(staff_num),	staff_num	INT(5)	NOT	NULL,	first_name	VARCHAR(100)	NOT	NULL,	pens_in_drawer	INT(2)	NOT	NULL,	CONSTRAINT	pens_in_drawer_range	CHECK(pens_in_drawer	BETWEEN	1	AND	99));	Designs	to	avoid	Object-oriented	design
principles	do	not	effectively	translate	to	relational	database	designs—avoid	this	pitfall.	Placing	the	value	in	one	column	and	the	units	in	another	column.	The	column	should	make	the	units	self-evident	to	prevent	the	requirement	to	combine	columns	again	later	in	the	application.	Use	CHECK()	to	ensure	valid	data	is	inserted	into	the	column.	Entity–
Attribute–Value	(EAV)	tables—use	a	specialist	product	intended	for	handling	such	schema-less	data	instead.	Splitting	up	data	that	should	be	in	one	table	across	many	tables	because	of	arbitrary	concerns	such	as	time-based	archiving	or	location	in	a	multinational	organisation.	Later	queries	must	then	work	across	multiple	tables	with	UNION	rather
than	just	simply	querying	one	table.	Appendix	Reserved	keyword	reference	A	list	of	ANSI	SQL	(92,	99	and	2003),	MySQL	3	to	5.x,	PostgreSQL	8.1,	MS	SQL	Server	2000,	MS	ODBC	and	Oracle	10.2	reserved	keywords.	A	ABORT	ABS	ABSOLUTE	ACCESS	ACTION	ADA	ADD	ADMIN	AFTER	AGGREGATE	ALIAS	ALL	ALLOCATE	ALSO	ALTER	ALWAYS
ANALYSE	ANALYZE	AND	ANY	ARE	ARRAY	AS	ASC	ASENSITIVE	ASSERTION	ASSIGNMENT	ASYMMETRIC	AT	ATOMIC	ATTRIBUTE	ATTRIBUTES	AUDIT	AUTHORIZATION	AUTO_INCREMENT	AVG	AVG_ROW_LENGTH	BACKUP	BACKWARD	BEFORE	BEGIN	BERNOULLI	BETWEEN	BIGINT	BINARY	BIT	BIT_LENGTH	BITVAR	BLOB	BOOL
BOOLEAN	BOTH	BREADTH	BREAK	BROWSE	BULK	BY	C	CACHE	CALL	CALLED	CARDINALITY	CASCADE	CASCADED	CASE	CAST	CATALOG	CATALOG_NAME	CEIL	CEILING	CHAIN	CHANGE	CHAR	CHAR_LENGTH	CHARACTER	CHARACTER_LENGTH	CHARACTER_SET_CATALOG	CHARACTER_SET_NAME	CHARACTER_SET_SCHEMA
CHARACTERISTICS	CHARACTERS	CHECK	CHECKED	CHECKPOINT	CHECKSUM	CLASS	CLASS_ORIGIN	CLOB	CLOSE	CLUSTER	CLUSTERED	COALESCE	COBOL	COLLATE	COLLATION	COLLATION_CATALOG	COLLATION_NAME	COLLATION_SCHEMA	COLLECT	COLUMN	COLUMN_NAME	COLUMNS	COMMAND_FUNCTION
COMMAND_FUNCTION_CODE	COMMENT	COMMIT	COMMITTED	COMPLETION	COMPRESS	COMPUTE	CONDITION	CONDITION_NUMBER	CONNECT	CONNECTION	CONNECTION_NAME	CONSTRAINT	CONSTRAINT_CATALOG	CONSTRAINT_NAME	CONSTRAINT_SCHEMA	CONSTRAINTS	CONSTRUCTOR	CONTAINS	CONTAINSTABLE
CONTINUE	CONVERSION	CONVERT	COPY	CORR	CORRESPONDING	COUNT	COVAR_POP	COVAR_SAMP	CREATE	CREATEDB	CREATEROLE	CREATEUSER	CROSS	CSV	CUBE	CUME_DIST	CURRENT	CURRENT_DATE	CURRENT_DEFAULT_TRANSFORM_GROUP	CURRENT_PATH	CURRENT_ROLE	CURRENT_TIME	CURRENT_TIMESTAMP
CURRENT_TRANSFORM_GROUP_FOR_TYPE	CURRENT_USER	CURSOR	CURSOR_NAME	CYCLE	DATA	DATABASE	DATABASES	DATE	DATETIME	DATETIME_INTERVAL_CODE	DATETIME_INTERVAL_PRECISION	DAY	DAY_HOUR	DAY_MICROSECOND	DAY_MINUTE	DAY_SECOND	DAYOFMONTH	DAYOFWEEK	DAYOFYEAR	DBCC	DEALLOCATE
DEC	DECIMAL	DECLARE	DEFAULT	DEFAULTS	DEFERRABLE	DEFERRED	DEFINED	DEFINER	DEGREE	DELAY_KEY_WRITE	DELAYED	DELETE	DELIMITER	DELIMITERS	DENSE_RANK	DENY	DEPTH	DEREF	DERIVED	DESC	DESCRIBE	DESCRIPTOR	DESTROY	DESTRUCTOR	DETERMINISTIC	DIAGNOSTICS	DICTIONARY	DISABLE
DISCONNECT	DISK	DISPATCH	DISTINCT	DISTINCTROW	DISTRIBUTED	DIV	DO	DOMAIN	DOUBLE	DROP	DUAL	DUMMY	DUMP	DYNAMIC	DYNAMIC_FUNCTION	DYNAMIC_FUNCTION_CODE	EACH	ELEMENT	ELSE	ELSEIF	ENABLE	ENCLOSED	ENCODING	ENCRYPTED	END	END-EXEC	ENUM	EQUALS	ERRLVL	ESCAPE	ESCAPED	EVERY
EXCEPT	EXCEPTION	EXCLUDE	EXCLUDING	EXCLUSIVE	EXEC	EXECUTE	EXISTING	EXISTS	EXIT	EXP	EXPLAIN	EXTERNAL	EXTRACT	FALSE	FETCH	FIELDS	FILE	FILLFACTOR	FILTER	FINAL	FIRST	FLOAT	FLOAT4	FLOAT8	FLOOR	FLUSH	FOLLOWING	FOR	FORCE	FOREIGN	FORTRAN	FORWARD	FOUND	FREE	FREETEXT	FREETEXTTABLE
FREEZE	FROM	FULL	FULLTEXT	FUNCTION	FUSION	G	GENERAL	GENERATED	GET	GLOBAL	GO	GOTO	GRANT	GRANTED	GRANTS	GREATEST	GROUP	GROUPING	HANDLER	HAVING	HEADER	HEAP	HIERARCHY	HIGH_PRIORITY	HOLD	HOLDLOCK	HOST	HOSTS	HOUR	HOUR_MICROSECOND	HOUR_MINUTE	HOUR_SECOND	IDENTIFIED
IDENTITY	IDENTITY_INSERT	IDENTITYCOL	IF	IGNORE	ILIKE	IMMEDIATE	IMMUTABLE	IMPLEMENTATION	IMPLICIT	IN	INCLUDE	INCLUDING	INCREMENT	INDEX	INDICATOR	INFILE	INFIX	INHERIT	INHERITS	INITIAL	INITIALIZE	INITIALLY	INNER	INOUT	INPUT	INSENSITIVE	INSERT	INSERT_ID	INSTANCE	INSTANTIABLE	INSTEAD	INT
INT1	INT2	INT3	INT4	INT8	INTEGER	INTERSECT	INTERSECTION	INTERVAL	INTO	INVOKER	IS	ISAM	ISNULL	ISOLATION	ITERATE	JOIN	K	KEY	KEY_MEMBER	KEY_TYPE	KEYS	KILL	LANCOMPILER	LANGUAGE	LARGE	LAST	LAST_INSERT_ID	LATERAL	LEADING	LEAST	LEAVE	LEFT	LENGTH	LESS	LEVEL	LIKE	LIMIT	LINENO	LINES	LISTEN
LN	LOAD	LOCAL	LOCALTIME	LOCALTIMESTAMP	LOCATION	LOCATOR	LOCK	LOGIN	LOGS	LONG	LONGBLOB	LONGTEXT	LOOP	LOW_PRIORITY	LOWER	M	MAP	MATCH	MATCHED	MAX	MAX_ROWS	MAXEXTENTS	MAXVALUE	MEDIUMBLOB	MEDIUMINT	MEDIUMTEXT	MEMBER	MERGE	MESSAGE_LENGTH	MESSAGE_OCTET_LENGTH
MESSAGE_TEXT	METHOD	MIDDLEINT	MIN	MIN_ROWS	MINUS	MINUTE	MINUTE_MICROSECOND	MINUTE_SECOND	MINVALUE	MLSLABEL	MOD	MODE	MODIFIES	MODIFY	MODULE	MONTH	MONTHNAME	MORE	MOVE	MULTISET	MUMPS	MYISAM	NAME	NAMES	NATIONAL	NATURAL	NCHAR	NCLOB	NESTING	NEW	NEXT	NO
NO_WRITE_TO_BINLOG	NOAUDIT	NOCHECK	NOCOMPRESS	NOCREATEDB	NOCREATEROLE	NOCREATEUSER	NOINHERIT	NOLOGIN	NONCLUSTERED	NONE	NORMALIZE	NORMALIZED	NOSUPERUSER	NOT	NOTHING	NOTIFY	NOTNULL	NOWAIT	NULL	NULLABLE	NULLIF	NULLS	NUMBER	NUMERIC	OBJECT	OCTET_LENGTH	OCTETS
OF	OFF	OFFLINE	OFFSET	OFFSETS	OIDS	OLD	ON	ONLINE	ONLY	OPEN	OPENDATASOURCE	OPENQUERY	OPENROWSET	OPENXML	OPERATION	OPERATOR	OPTIMIZE	OPTION	OPTIONALLY	OPTIONS	OR	ORDER	ORDERING	ORDINALITY	OTHERS	OUT	OUTER	OUTFILE	OUTPUT	OVER	OVERLAPS	OVERLAY	OVERRIDING	OWNER
PACK_KEYS	PAD	PARAMETER	PARAMETER_MODE	PARAMETER_NAME	PARAMETER_ORDINAL_POSITION	PARAMETER_SPECIFIC_CATALOG	PARAMETER_SPECIFIC_NAME	PARAMETER_SPECIFIC_SCHEMA	PARAMETERS	PARTIAL	PARTITION	PASCAL	PASSWORD	PATH	PCTFREE	PERCENT	PERCENT_RANK	PERCENTILE_CONT
PERCENTILE_DISC	PLACING	PLAN	PLI	POSITION	POSTFIX	POWER	PRECEDING	PRECISION	PREFIX	PREORDER	PREPARE	PREPARED	PRESERVE	PRIMARY	PRINT	PRIOR	PRIVILEGES	PROC	PROCEDURAL	PROCEDURE	PROCESS	PROCESSLIST	PUBLIC	PURGE	QUOTE	RAID0	RAISERROR	RANGE	RANK	RAW	READ	READS	READTEXT	REAL
RECHECK	RECONFIGURE	RECURSIVE	REF	REFERENCES	REFERENCING	REGEXP	REGR_AVGX	REGR_AVGY	REGR_COUNT	REGR_INTERCEPT	REGR_R2	REGR_SLOPE	REGR_SXX	REGR_SXY	REGR_SYY	REINDEX	RELATIVE	RELEASE	RELOAD	RENAME	REPEAT	REPEATABLE	REPLACE	REPLICATION	REQUIRE	RESET	RESIGNAL	RESOURCE
RESTART	RESTORE	RESTRICT	RESULT	RETURN	RETURNED_CARDINALITY	RETURNED_LENGTH	RETURNED_OCTET_LENGTH	RETURNED_SQLSTATE	RETURNS	REVOKE	RIGHT	RLIKE	ROLE	ROLLBACK	ROLLUP	ROUTINE	ROUTINE_CATALOG	ROUTINE_NAME	ROUTINE_SCHEMA	ROW	ROW_COUNT	ROW_NUMBER	ROWCOUNT
ROWGUIDCOL	ROWID	ROWNUM	ROWS	RULE	SAVE	SAVEPOINT	SCALE	SCHEMA	SCHEMA_NAME	SCHEMAS	SCOPE	SCOPE_CATALOG	SCOPE_NAME	SCOPE_SCHEMA	SCROLL	SEARCH	SECOND	SECOND_MICROSECOND	SECTION	SECURITY	SELECT	SELF	SENSITIVE	SEPARATOR	SEQUENCE	SERIALIZABLE	SERVER_NAME	SESSION
SESSION_USER	SET	SETOF	SETS	SETUSER	SHARE	SHOW	SHUTDOWN	SIGNAL	SIMILAR	SIMPLE	SIZE	SMALLINT	SOME	SONAME	SOURCE	SPACE	SPATIAL	SPECIFIC	SPECIFIC_NAME	SPECIFICTYPE	SQL	SQL_BIG_RESULT	SQL_BIG_SELECTS	SQL_BIG_TABLES	SQL_CALC_FOUND_ROWS	SQL_LOG_OFF	SQL_LOG_UPDATE
SQL_LOW_PRIORITY_UPDATES	SQL_SELECT_LIMIT	SQL_SMALL_RESULT	SQL_WARNINGS	SQLCA	SQLCODE	SQLERROR	SQLEXCEPTION	SQLSTATE	SQLWARNING	SQRT	SSL	STABLE	START	STARTING	STATE	STATEMENT	STATIC	STATISTICS	STATUS	STDDEV_POP	STDDEV_SAMP	STDIN	STDOUT	STORAGE	STRAIGHT_JOIN	STRICT
STRING	STRUCTURE	STYLE	SUBCLASS_ORIGIN	SUBLIST	SUBMULTISET	SUBSTRING	SUCCESSFUL	SUM	SUPERUSER	SYMMETRIC	SYNONYM	SYSDATE	SYSID	SYSTEM	SYSTEM_USER	TABLE	TABLE_NAME	TABLES	TABLESAMPLE	TABLESPACE	TEMP	TEMPLATE	TEMPORARY	TERMINATE	TERMINATED	TEXT	TEXTSIZE	THAN	THEN	TIES
TIME	TIMESTAMP	TIMEZONE_HOUR	TIMEZONE_MINUTE	TINYBLOB	TINYINT	TINYTEXT	TO	TOAST	TOP	TOP_LEVEL_COUNT	TRAILING	TRAN	TRANSACTION	TRANSACTION_ACTIVE	TRANSACTIONS_COMMITTED	TRANSACTIONS_ROLLED_BACK	TRANSFORM	TRANSFORMS	TRANSLATE	TRANSLATION	TREAT	TRIGGER
TRIGGER_CATALOG	TRIGGER_NAME	TRIGGER_SCHEMA	TRIM	TRUE	TRUNCATE	TRUSTED	TSEQUAL	TYPE	UESCAPE	UID	UNBOUNDED	UNCOMMITTED	UNDER	UNDO	UNENCRYPTED	UNION	UNIQUE	UNKNOWN	UNLISTEN	UNLOCK	UNNAMED	UNNEST	UNSIGNED	UNTIL	UPDATE	UPDATETEXT	UPPER	USAGE	USE	USER
USER_DEFINED_TYPE_CATALOG	USER_DEFINED_TYPE_CODE	USER_DEFINED_TYPE_NAME	USER_DEFINED_TYPE_SCHEMA	USING	UTC_DATE	UTC_TIME	UTC_TIMESTAMP	VACUUM	VALID	VALIDATE	VALIDATOR	VALUE	VALUES	VAR_POP	VAR_SAMP	VARBINARY	VARCHAR	VARCHAR2	VARCHARACTER	VARIABLE	VARIABLES	VARYING
VERBOSE	VIEW	VOLATILE	WAITFOR	WHEN	WHENEVER	WHERE	WHILE	WIDTH_BUCKET	WINDOW	WITH	WITHIN	WITHOUT	WORK	WRITE	WRITETEXT	X509	XOR	YEAR	YEAR_MONTH	ZEROFILL	ZONE	Column	data	types	These	are	some	suggested	column	data	types	to	use	for	maximum	compatibility	between	database	engines.	Character
types:	Numeric	types	Exact	numeric	types	BIGINT	DECIMAL	DECFLOAT	INTEGER	NUMERIC	SMALLINT	Approximate	numeric	types	DOUBLE	PRECISION	FLOAT	REAL	Binary	types:	Additional	types	Learn	SQL	with	Metabase	Download	Metabase	for	free,	or	sign	up	for	a	free	trial	of	Metabase	Cloud	This	article	covers	some	best	practices	for
writing	SQL	queries	for	data	analysts	and	data	scientists.	Most	of	our	discussion	will	concern	SQL	in	general,	but	we’ll	include	some	notes	on	features	specific	to	Metabase	that	make	writing	SQL	a	breeze.	Correctness,	readability,	then	optimization:	in	that	order	The	standard	warning	against	premature	optimization	applies	here.	Avoid	tuning	your
SQL	query	until	you	know	your	query	returns	the	data	you’re	looking	for.	And	even	then,	only	prioritize	optimizing	your	query	if	it’s	run	frequently	(like	powering	a	popular	dashboard),	or	if	the	query	traverses	a	large	number	of	rows.	In	general,	prioritize	accuracy	(does	the	query	produce	the	intended	results),	and	readability	(can	others	easily
understand	and	modify	the	code)	before	worrying	about	performance.	Make	your	haystacks	as	small	as	possible	before	searching	for	your	needles	Arguably,	we’re	already	getting	into	optimization	here,	but	the	goal	should	be	to	tell	the	database	to	scan	the	minimum	number	of	values	necessary	to	retrieve	your	results.	Part	of	SQL’s	beauty	is	its
declarative	nature.	Instead	of	telling	the	database	how	to	retrieve	records,	you	need	only	tell	the	database	which	records	you	need,	and	the	database	should	figure	out	the	most	efficient	way	to	get	that	information.	Consequently,	much	of	the	advice	about	improving	the	efficiency	of	queries	is	simply	about	showing	people	how	to	use	the	tools	in	SQL	to
articulate	their	needs	with	more	precision.	We’ll	review	the	general	order	of	query	execution,	and	include	tips	along	the	way	to	reduce	your	search	space.	Then	we’ll	talk	about	three	essential	tools	to	add	to	your	utility	belt:	INDEX,	EXPLAIN,	and	WITH.	First,	get	to	know	your	data	Familiarize	yourself	with	your	data	before	your	write	a	single	line	of
code	by	studying	the	metadata	to	make	sure	that	a	column	really	does	contain	the	data	you	expect.	The	SQL	editor	in	Metabase	features	a	handy	data	reference	tab	(accessible	via	the	book	icon),	where	you	can	browse	through	the	tables	in	your	database,	and	view	their	columns	and	connections:	You	can	also	view	sample	values	for	specific	columns:
Metabase	gives	you	many	different	ways	to	explore	your	data:	you	can	X-ray	tables,	compose	questions	using	the	query	builder,	convert	a	saved	question	to	SQL	code,	or	build	from	an	existing	SQL	query.	We	cover	this	in	other	articles;	for	now,	let’s	go	through	the	general	workflow	of	a	query.	Developing	your	query	Everyone’s	method	will	differ,	but
here’s	an	example	workflow	to	follow	when	developing	a	query.	As	above,	study	the	column	and	table	metadata.	If	you’re	using	Metabase’s	native	(SQL)	editor,	you	can	also	search	for	Snippets	that	contain	SQL	code	for	the	table	and	columns	you’re	working	with.	Snippets	allow	you	to	see	how	other	analysts	have	been	querying	the	data.	Or	you	can
start	a	query	from	an	existing	SQL	question.	To	get	a	feel	for	a	table’s	values,	SELECT	*	from	the	tables	you’re	working	with	and	LIMIT	your	results.	Keep	the	LIMIT	applied	as	you	refine	your	columns	(or	add	more	columns	via	joins).	Narrow	down	the	columns	to	the	minimal	set	required	to	answer	your	question.	Apply	any	filters	to	those	columns.	If
you	need	to	aggregate	data,	aggregate	a	small	number	of	rows	and	confirm	that	the	aggregations	are	as	you	expect.	Once	you	have	a	query	returning	the	results	you	need,	look	for	sections	of	the	query	to	save	as	a	Common	Table	Expression	(CTE)	to	encapsulate	that	logic.	With	Metabase,	you	can	also	save	code	as	a	Snippet	to	share	and	reuse	in
other	queries.	The	general	order	of	query	execution	Before	we	get	into	individual	tips	on	writing	SQL	code,	it’s	important	to	have	a	sense	of	how	databases	will	carry	out	your	query.	This	differs	from	the	reading	order	(left	to	right,	top	to	bottom)	you	use	to	compose	your	query.	Query	optimizers	can	change	the	order	of	the	following	list,	but	this
general	lifecycle	of	a	SQL	query	is	good	to	keep	in	mind	when	writing	SQL.	We’ll	use	the	execution	order	to	group	the	tips	on	writing	good	SQL	that	follow.	The	rule	of	thumb	here	is	this:	the	earlier	in	this	list	you	can	eliminate	data,	the	better.	FROM	(and	JOIN)	get(s)	the	tables	referenced	in	the	query.	These	tables	represent	the	maximum	search
space	specified	by	your	query.	Where	possible,	restrict	this	search	space	before	moving	forward.	WHERE	filters	data.	GROUP	BY	aggregates	data.	HAVING	filters	out	aggregated	data	that	doesn’t	meet	the	criteria.	SELECT	grabs	the	columns	(then	deduplicates	rows	if	DISTINCT	is	invoked).	UNION	merges	the	selected	data	into	a	results	set.	ORDER
BY	sorts	the	results.	And,	of	course,	there	will	always	be	occasions	where	the	query	optimizer	for	your	particular	database	will	devise	a	different	query	plan,	so	don’t	get	hung	up	on	this	order.	Some	query	guidelines	(not	rules)	The	following	tips	are	guidelines,	not	rules,	intended	to	keep	you	out	of	trouble.	Each	database	handles	SQL	differently,	has	a
slightly	different	set	of	functions,	and	takes	different	approaches	to	optimizing	queries.	And	that’s	before	we	even	get	into	comparing	traditional	transactional	databases	with	analytics	databases	that	use	columnar	storage	formats,	which	have	vastly	different	performance	characteristics.	Help	people	out	(including	yourself	three	months	from	now)	by
adding	comments	that	explain	different	parts	of	the	code.	The	most	important	thing	to	capture	here	is	the	“why.”	For	example,	it’s	obvious	that	the	code	below	filters	out	orders	with	ID	greater	than	10,	but	the	reason	it’s	doing	that	is	because	the	first	10	orders	are	used	for	testing.	SELECT	id,	product	FROM	orders	--	filter	out	test	orders	WHERE
order.id	>	10	The	catch	here	is	that	you	introduce	a	little	maintenance	overhead:	if	you	change	the	code,	you	need	to	make	sure	that	the	comment	is	still	relevant	and	up	to	date.	But	that’s	a	small	price	to	pay	for	readable	code.	SQL	best	practices	for	FROM	Join	tables	using	the	ON	keyword	Although	it’s	possible	to	“join”	two	tables	using	a	WHERE
clause	(that	is,	to	perform	an	implicit	join,	like	SELECT	*	FROM	a,b	WHERE	a.foo	=	b.bar),	you	should	instead	prefer	an	explicit	JOIN:	SELECT	o.id,	o.total,	p.vendor	FROM	orders	AS	o	JOIN	products	AS	p	ON	o.product_id	=	p.id	Mostly	for	readability,	as	the	JOIN	+	ON	syntax	distinguishes	joins	from	WHERE	clauses	intended	to	filter	the	results.
Alias	multiple	tables	When	querying	multiple	tables,	use	aliases,	and	employ	those	aliases	in	your	select	statement,	so	the	database	(and	your	reader)	doesn’t	need	to	parse	which	column	belongs	to	which	table.	Note	that	if	you	have	columns	with	the	same	name	across	multiple	tables,	you	will	need	to	explicitly	reference	them	with	either	the	table
name	or	alias.	Avoid	SELECT	title,	last_name,	first_name	FROM	fiction_books	LEFT	JOIN	fiction_authors	ON	fiction_books.author_id	=	fiction_authors.id	Prefer	SELECT	books.title,	authors.last_name,	authors.first_name	FROM	fiction_books	AS	books	LEFT	JOIN	fiction_authors	AS	authors	ON	books.author_id	=	authors.id	This	is	a	trivial	example,	but

when	the	number	of	tables	and	columns	in	your	query	increases,	your	readers	won’t	have	to	track	down	which	column	is	in	which	table.	That	and	your	queries	might	break	if	you	join	a	table	with	an	ambiguous	column	name	(e.g.,	both	tables	include	a	field	called	Created_At.	Note	that	field	filters	are	incompatible	with	table	aliases,	so	you’ll	need	to
remove	aliases	when	connecting	filter	widgets	to	your	Field	Filters.	SQL	best	practices	for	WHERE	Filter	with	WHERE	before	HAVING	Use	a	WHERE	clause	to	filter	superfluous	rows,	so	you	don’t	have	to	compute	those	values	in	the	first	place.	Only	after	removing	irrelevant	rows,	and	after	aggregating	those	rows	and	grouping	them,	should	you
include	a	HAVING	clause	to	filter	out	aggregates.	Avoid	functions	on	columns	in	WHERE	clauses	Using	a	function	on	a	column	in	a	WHERE	clause	can	really	slow	down	your	query,	as	the	function	makes	the	query	non-sargable	(i.e.,	it	prevents	the	database	from	using	an	index	to	speed	up	the	query).	Instead	of	using	the	index	to	skip	to	the	relevant
rows,	the	function	on	the	column	forces	the	database	to	run	the	function	on	each	row	of	the	table.	And	remember,	the	concatenation	operator	||	is	also	a	function,	so	don’t	get	fancy	trying	to	concat	strings	to	filter	multiple	columns.	Prefer	multiple	conditions	instead:	Avoid	SELECT	hero,	sidekick	FROM	superheros	WHERE	hero	||	sidekick	=
'BatmanRobin'	Prefer	SELECT	hero,	sidekick	FROM	superheros	WHERE	hero	=	'Batman'	AND	sidekick	=	'Robin'	Prefer	=	to	LIKE	This	is	not	always	the	case.	It’s	good	to	know	that	LIKE	compares	characters,	and	can	be	paired	with	wildcard	operators	like	%,	whereas	the	=	operator	compares	strings	and	numbers	for	exact	matches.	The	=	can	take
advantage	of	indexed	columns.	This	isn’t	the	case	with	all	databases,	as	LIKE	can	use	indexes	(if	they	exist	for	the	field)	as	long	as	you	avoid	prefixing	the	search	term	with	the	wildcard	operator,	%.	Which	brings	us	to	our	next	point:	Avoid	bookending	wildcards	in	WHERE	statements	Using	wildcards	for	searching	can	be	expensive.	Prefer	adding
wildcards	to	the	end	of	strings.	Prefixing	a	string	with	a	wildcard	can	lead	to	a	full	table	scan.	Avoid	SELECT	column	FROM	table	WHERE	col	LIKE	"%wizar%"	Prefer	SELECT	column	FROM	table	WHERE	col	LIKE	"wizar%"	Prefer	EXISTS	to	IN	If	you	just	need	to	verify	the	existence	of	a	value	in	a	table,	prefer	EXISTS	to	IN,	as	the	EXISTS	process
exits	as	soon	as	it	finds	the	search	value,	whereas	IN	will	scan	the	entire	table.	IN	should	be	used	for	finding	values	in	lists.	Similarly,	prefer	NOT	EXISTS	to	NOT	IN.	SQL	best	practices	for	GROUP	BY	Order	multiple	groupings	by	descending	cardinality	Where	possible,	GROUP	BY	columns	in	order	of	descending	cardinality.	That	is,	group	by	columns
with	more	unique	values	first	(like	IDs	or	phone	numbers)	before	grouping	by	columns	with	fewer	distinct	values	(like	state	or	gender).	SQL	best	practices	for	HAVING	Only	use	HAVING	for	filtering	aggregates	And	before	HAVING,	filter	out	values	using	a	WHERE	clause	before	aggregating	and	grouping	those	values.	SQL	best	practices	for	SELECT
SELECT	columns,	not	stars	Specify	the	columns	you’d	like	to	include	in	the	results	(though	it’s	fine	to	use	*	when	first	exploring	tables	—	just	remember	to	LIMIT	your	results).	SQL	best	practices	for	UNION	Prefer	UNION	All	to	UNION	If	duplicates	are	not	an	issue,	UNION	ALL	won’t	discard	them,	and	since	UNION	ALL	isn’t	tasked	with	removing
duplicates,	the	query	will	be	more	efficient.	SQL	best	practices	for	ORDER	BY	Sorting	is	expensive.	If	you	must	sort,	make	sure	your	subqueries	are	not	needlessly	sorting	data.	SQL	best	practices	for	INDEX	This	section	is	for	the	database	admins	in	the	crowd	(and	a	topic	too	large	to	fit	in	this	article).	One	of	the	most	common	things	folks	run	into
when	experiencing	performance	issues	in	database	queries	is	a	lack	of	adequate	indexing.	Which	columns	you	should	index	usually	depends	on	the	columns	you’re	filtering	by	(i.e.,	which	columns	typically	end	up	in	your	WHERE	clauses).	If	you	find	that	you’re	always	filtering	by	a	common	set	of	columns,	you	should	consider	indexing	those	columns.
Adding	indexes	Indexing	foreign	key	columns	and	frequently	queried	columns	can	significantly	decrease	query	times.	Here’s	an	example	statement	to	create	an	index:	CREATE	INDEX	product_title_index	ON	products	(title)	There	are	different	types	of	indexes	available,	the	most	common	index	type	uses	a	B-tree	to	speed	up	retrieval.	Check	out	our
article	on	making	dashboards	faster,	and	consult	your	database’s	documentation	on	how	to	create	an	index.	Use	partial	indexes	For	particularly	large	datasets,	or	lopsided	datasets,	where	certain	value	ranges	appear	more	frequently,	consider	creating	an	index	with	a	WHERE	clause	to	limit	the	number	of	rows	indexed.	Partial	indexes	can	also	be
useful	for	date	ranges	as	well,	for	example	if	you	want	to	index	the	past	week	of	data	only.	Use	composite	indexes	For	columns	that	typically	go	together	in	queries	(such	as	last_name,	first_name),	consider	creating	a	composite	index.	The	syntax	is	similar	to	creating	a	single	index.	For	example:	CREATE	INDEX	full_name_index	ON	customers
(last_name,	first_name)	EXPLAIN	Look	for	bottlenecks	Some	databases,	like	PostgreSQL,	offer	insight	into	the	query	plan	based	on	your	SQL	code.	Simply	prefix	your	code	with	the	keywords	EXPLAIN	ANALYZE.	You	can	use	these	commands	to	check	your	query	plans	and	look	for	bottlenecks,	or	to	compare	plans	from	one	version	of	your	query	to
another	to	see	which	version	is	more	efficient.	Here’s	an	example	query	using	the	dvdrental	sample	database	available	for	PostgreSQL.	EXPLAIN	ANALYZE	SELECT	title,	release_year	FROM	film	WHERE	release_year	>	2000;	And	the	output:	Seq	Scan	on	film	(cost=0.00..66.50	rows=1000	width=19)	(actual	time=0.008..0.311	rows=1000	loops=1)
Filter:	((release_year)::integer	>	2000)	Planning	Time:	0.062	ms	Execution	Time:	0.416	ms	You’ll	see	milliseconds	required	for	planning	time,	execution	time,	as	well	as	the	cost,	rows,	width,	times,	loops,	memory	usage,	and	more.	Reading	these	analyses	is	somewhat	of	an	art,	but	you	can	use	them	to	identify	problem	areas	in	your	queries	(such	as
nested	loops,	or	columns	that	could	benefit	from	indexing),	as	you	refine	them.	Here’s	PostreSQL’s	documentation	on	using	EXPLAIN.	WITH	Organize	your	queries	with	Common	Table	Expressions	(CTE)	Use	the	WITH	clause	to	encapsulate	logic	in	a	common	table	expression	(CTE).	Here’s	an	example	of	a	query	that	looks	for	the	products	with	the
highest	average	revenue	per	unit	sold	in	2019,	as	well	as	max	and	min	values.	WITH	product_orders	AS	(SELECT	o.created_at	AS	order_date,	p.title	AS	product_title,	(o.subtotal	/	o.quantity)	AS	revenue_per_unit	FROM	orders	AS	o	LEFT	JOIN	products	AS	p	ON	o.product_id	=	p.id	--	Filter	out	orders	placed	by	customer	service	for	charging	customers
WHERE	o.quantity	>	0)	SELECT	product_title	AS	product,	AVG(revenue_per_unit)	AS	avg_revenue_per_unit,	MAX(revenue_per_unit)	AS	max_revenue_per_unit,	MIN(revenue_per_unit)	AS	min_revenue_per_unit	FROM	product_orders	WHERE	order_date	BETWEEN	'2019-01-01'	AND	'2019-12-31'	GROUP	BY	product	ORDER	BY	avg_revenue_per_unit
DESC	The	WITH	clause	makes	the	code	readable,	as	the	main	query	(what	you’re	actually	looking	for)	isn’t	interrupted	by	a	long	sub	query.	You	can	also	use	CTEs	to	make	your	SQL	more	readable	if,	for	example,	your	database	has	fields	that	are	awkwardly	named,	or	that	require	a	little	bit	of	data	munging	to	get	the	useful	data.	For	example,	CTEs
can	be	useful	when	working	with	JSON	fields.	Here’s	an	example	of	extracting	and	converting	fields	from	a	JSON	blob	of	user	events.	WITH	source_data	AS	(SELECT	events->'data'->>'name'	AS	event_name,	CAST(events->'data'->>'ts'	AS	timestamp)	AS	event_timestamp	CAST(events->'data'->>'cust_id'	AS	int)	AS	customer_id	FROM	user_activity)
SELECT	event_name,	event_timestamp,	customer_id	FROM	source_data	Alternatively,	you	could	save	a	subquery	as	a	Snippet:	And	yes,	as	you	might	expect,	the	Aerodynamic	Leather	Toucan	fetches	the	highest	average	revenue	per	unit	sold.	SQL	is	amazing.	But	so	is	Metabase’s	Query	Builder.	You	can	compose	queries	using	Metabase’s	graphical
interface	to	join	tables,	filter	and	summarize	data,	create	custom	columns,	and	more.	And	with	custom	expressions,	you	can	handle	the	vast	majority	of	analytical	use	cases,	without	ever	needing	to	reach	for	SQL.	Questions	composed	using	the	Query	Builderr	also	benefit	from	automatic	drill-through,	which	allows	viewers	of	your	charts	to	click
through	and	explore	the	data,	a	feature	not	available	to	questions	written	in	SQL.	Glaring	errors	or	omissions?	There	are	libraries	of	books	on	SQL,	so	we’re	only	scratching	the	surface	here.	You	can	share	the	secrets	of	your	SQL	sorcery	with	other	Metabase	users	on	our	forum.	CTEs	are	named	sets	of	results	that	help	keep	your	code	organized.	They
allow	you	to	reuse	results	in	the	same	query,	and	perform	multi-level	aggregations.	Next	article

