
	

https://seliraxipo.maxudijuz.com/484989618061539244653983758928915692922021?vavokuxotoxegorinenedasojiliraxesexesuwiguzuraripegoresegus=paroxujogalonazarelofuxamatogizevigiweturalitusofidobuzanilijatolulepepugofajurakalitetinirejegelopodadevoladominaruzuforudoziravobisivajamenedopoweduzabuzodatawomurozapufiwigudiwewomumazelovimalubetufewire&utm_term=iperf+for+windows+free+download&moxemepupodiwafofevuxogudinofenejokowemevi=jobigujiwapetomotezawudijebamibubabonekupurasomizuvepaxujajenuwagejutosedegozudovimokadisaridulimopixijad

You	can’t	perform	that	action	at	this	time.	Page	2	You	can’t	perform	that	action	at	this	time.	Page	3	You	can’t	perform	that	action	at	this	time.	iperf	windows	builds	with	GitHub	actions	Download	Latest	V3.17.1	V3.17	V3.16	V3.15	V3.14	V3.13	build	Build	process	uses	following	actions.	Build	workflow	file	can	be	found	here	build.yaml.	iperf	Checkout
MSYS2	Shell	for	Windows	Automatic	Releases	LICENSE	All	upstream	assets	are	Licensed	under	their	respective	licenses.	iperf’s	license	is	included	with	the	build	assets.	The	iperf	series	of	tools	perform	active	measurements	to	determine	the	maximum	achievable	bandwidth	on	IP	networks.	It	supports	tuning	of	various	parameters	related	to	timing,
protocols,	and	buffers.	For	each	test	it	reports	the	measured	throughput,	loss,	and	other	parameters.	This	version,	sometimes	referred	to	as	iperf3,	is	a	redesign	of	an	original	version	developed	at	NLANR	/	DAST.	iperf3	is	a	new	implementation	from	scratch,	with	the	goal	of	a	smaller,	simpler	code	base,	and	a	library	version	of	the	functionality	that
can	be	used	in	other	programs.	iperf3	also	incorporates	a	number	of	features	found	in	other	tools	such	as	nuttcp	and	netperf,	but	were	missing	from	the	original	iperf.	These	include,	for	example,	a	zero-copy	mode	and	optional	JSON	output.	Note	that	iperf3	is	not	backwards	compatible	with	the	original	iperf.	Primary	development	for	iperf3	takes
place	on	CentOS	Linux,	FreeBSD,	and	macOS.	At	this	time,	these	are	the	only	officially	supported	platforms,	however	there	have	been	some	reports	of	success	with	OpenBSD,	Android,	and	other	Linux	distributions.	iperf3	is	principally	developed	by	ESnet	/	Lawrence	Berkeley	National	Laboratory.	It	is	released	under	a	three-clause	BSD	license.	iperf2
is	no	longer	being	developed	by	its	original	maintainers.	However,	beginning	in	2014,	another	developer	began	fixing	bugs	and	enhancing	functionality,	and	generating	releases	of	iperf2.	Both	projects	(as	of	late	2017)	are	currently	being	developed	actively,	but	independently.	More	information	can	be	found	in	the	iperf3	FAQ.	Project	homepage	and
documentation	hosted	on	GitHub	Pages:	Project	site	(source	code	repository,	issue	tracker)	hosted	on	GitHub:	Source	code	downloads:	Index	Module	Index	Search	Page	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,
even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you
remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in
the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Network	performance	software	tool	This
article	needs	additional	citations	for	verification.	Please	help	improve	this	article	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.Find	sources:	"Iperf"	–	news	·	newspapers	·	books	·	scholar	·	JSTOR	(March	2020)	(Learn	how	and	when	to	remove	this	message)	iperf2Description	of	Iperf	on	TCP	port	4662
under	linux	with	an	FTTH	connection.Original	author(s)Mark	Gates,	Alex	WarshavskyDeveloper(s)Robert	McMahon,	Tim	AucklandStable	release2.2.1[1]	/	November	6,	2024	(2024-11-06)	Repositorysf.net/p/iperf2/code/Written	inCOperating	systemCross-platformLicenseBSD	licenseWebsitesf.net/projects/iperf2/	iperf3Original	author(s)ESnetStable
release3.18	/	December	13,	2024	(2024-12-13)	Repositorygithub.com/esnet/iperfWritten	inCOperating	systemCross-platformLicenseBSD	licenseWebsitesoftware.es.net/iperf/	iperf,	Iperf,	or	iPerf,	is	a	tool	for	network	performance	measurement	and	tuning.	It	is	a	cross-platform	tool	that	can	produce	standardized	performance	measurements	for	any
network.	iperf	has	client	and	server	functionality,	and	can	create	data	streams	to	measure	the	throughput	between	the	two	ends	in	one	or	both	directions.[2]	Typical	iperf	output	contains	a	time-stamped	report	of	the	amount	of	data	transferred	and	the	throughput	measured.	The	data	streams	can	be	either	Transmission	Control	Protocol	(TCP)	or	User
Datagram	Protocol	(UDP):	UDP:	When	used	for	testing	UDP	capacity,	iperf	allows	the	user	to	specify	the	datagram	size	and	provides	results	for	the	datagram	throughput	and	the	packet	loss.	TCP:	When	used	for	testing	TCP	capacity,	iperf	measures	the	throughput	of	the	payload.	iperf	uses	1024	×	1024	for	mebibytes	and	1000	×	1000	for	megabytes.
iperf	is	open-source	software	written	in	C,	and	it	runs	on	various	platforms	including	Linux,	Unix	and	Windows	(either	natively	or	inside	Cygwin[3]).	The	availability	of	the	source	code	enables	the	user	to	scrutinize	the	measurement	methodology.	iperf	is	a	compatible	reimplementation	of	the	ttcp	program	that	was	developed	at	the	National	Center	for
Supercomputing	Applications	at	the	University	of	Illinois	by	the	Distributed	Applications	Support	Team	(DAST)	of	the	National	Laboratory	for	Applied	Network	Research	(NLANR),[4]	which	was	shut	down	on	December	31,	2006,	on	termination	of	funding	by	the	United	States	National	Science	Foundation.	iperf3	is	a	rewrite	of	iperf	from	scratch	to
create	a	smaller,	simpler	code	base.	iperf3	was	started	in	2009,	with	the	first	release	in	January	2014.	iperf3	is	not	backwards	compatible	with	iperf2.	iperf3	also	includes	a	library	version	which	enables	other	programs	to	use	the	provided	functionality.	iperf3	is	single	threaded	while	iperf2	is	multi-threaded.[5]	Officially	iperf3	supports	only	Linux.
Unofficial	builds	for	Windows	provided	by	Vivien	Guéant.[6]	A	user	of	Neowin,	BudMan,[7]	provides	unofficial	Windows	builds	on	his	server.[8]	Most	current	Linux	distributions	have	iperf3	in	their	native	package	repositories.	Unix	packages	are	available	from	Oracle	for	Solaris	11.4.	Netperf	Nuttcp	NetPIPE	bwping	Flowgrind	Measuring	network
throughput	Packet	generation	model	^	"Iperf	2	-	Browse	Files".	SourceForge.net.	^	"iPerf	-	The	TCP,	UDP	and	SCTP	network	bandwidth	measurement	tool".	Retrieved	21	January	2021.	^	"Cygwin	iperf	Package".	^	"NLANR/DAST	:	Iperf	-	The	TCP/UDP	Bandwidth	Measurement	Tool".	2005.	Archived	from	the	original	on	2008-10-12.	^	"iperf3	FAQ".
2018-07-02.	^	"iPerf	-	The	TCP,	UDP	and	SCTP	network	bandwidth	measurement	tool".	iperf.fr.	Retrieved	2025-02-04.	^	"Iperf	3.18	Windows	build".	Neowin.	2014-10-28.	Retrieved	2025-02-04.	^	"Home".	files.budman.pw.	Retrieved	2025-02-04.	Iperf	2	&	Iperf	3	Comparison	Table	Fenton,	Tom	(2020-02-20).	"Using	iPerf	to	Baseline	Network
Performance".	Schroder,	Carla	(2007-01-31).	"Measure	Network	Performance	with	iperf".	Retrieved	from	"	How	To	Use	VLC	Media	Player	to	Trim	Video	Clips	What	Is	the	$WinREAgent	Folder	and	Can	I	Delete	It?	Swear	Your	Way	to	Better	Search	Results	How	to	Get	a	Dark	Start	Menu	and	Taskbar	in	Windows	10	&	11	Enable,	Disable,	Manage,
Delete	or	Create	a	System	Restore	Point	PowerShell	and	Command	Prompt	101	Install	All	the	Microsoft	C++	Runtimes	at	Once	with	Visual	C++	Runtime	Installer	How	to	Back	up	or	Restore	the	Windows	Registry	How	to	Fix	Error	Code	0xc000007b	in	Windows	10,	8,	7,	and	Vista	How	to	Fix	ERR_SSL_PROTOCOL_ERROR	Windows	Binaries	are
available	at	:	macOS	:	HomeBrew	:	brew	install	iperf3	MacPorts	:	sudo	port	install	iperf3	Android	:	Building	iperf3	for	Android	:	Ubuntu	/	Debian	/	Mint	launch	a	terminal	and	type	sudo	apt-get	install	iperf3	Fedora	/	Red	Hat	/	CentOS	/	Rocky	launch	a	terminal	and	type	yum	install	iperf3	FreeBSD	launch	a	terminal	and	type	sudo	pkg	install
benchmarks/iperf3	French	forum	for	iPerf	iPerf3	server	log	script	:	iperf3tocsv.py	(2.5	KiB)	by	Kirth	Gersen	Log	for	iPerf3	:	display	"date,ip,localport,remoteport,duration,protocol,num_streams,cookie,sent,sent_mbps,rcvd,rcvd_mbps,totalsent,totalreceived"	Removing	the	old	version:	sudo	apt	remove	iperf3	libiperf0	Install	the	dependency:	sudo	apt
install	libsctp1	Take	a	recent	Ubuntu	distribution	from	source/iperf3	Download	iperf3_3.xx-1_amd64.deb	and	libiperf0_3.xx-1_amd64.deb	packages	(use	amd64	version	for	a	standard	version	of	Ubuntu)	Install	downloaded	packages:	sudo	dpkg	-i	libiperf0_3.xx-1_amd64.deb	iperf3_3.xx-1_amd64.deb	Remove	downloaded	packages	that	are	now
unnecessary:	rm	libiperf0_3.xx-1_amd64.deb	iperf3_3.xx-1_amd64.deb	Type	of	free	software	license	BSD	licenses	are	a	family	of	permissive	free	software	licenses,	imposing	minimal	restrictions	on	the	use	and	distribution	of	covered	software.	This	is	in	contrast	to	copyleft	licenses,	which	have	share-alike	requirements.	The	original	BSD	license	was
used	for	its	namesake,	the	Berkeley	Software	Distribution	(BSD),	a	Unix-like	operating	system.	The	original	version	has	since	been	revised,	and	its	descendants	are	referred	to	as	modified	BSD	licenses.	BSD	is	both	a	license	and	a	class	of	license	(generally	referred	to	as	BSD-like).	The	modified	BSD	license	(in	wide	use	today)	is	very	similar	to	the
license	originally	used	for	the	BSD	version	of	Unix.	The	BSD	license	is	a	simple	license	that	merely	requires	that	all	code	retain	the	BSD	license	notice	if	redistributed	in	source	code	format,	or	reproduce	the	notice	if	redistributed	in	binary	format.	The	BSD	license	(unlike	some	other	licenses	e.g.	GPL)	does	not	require	that	source	code	be	distributed
at	all.	In	addition	to	the	original	(4-clause)	license	used	for	BSD,	several	derivative	licenses	have	emerged	that	are	also	commonly	referred	to	as	a	"BSD	license".	Today,	the	typical	BSD	license	is	the	3-clause	version,	which	is	revised	from	the	original	4-clause	version.	In	all	BSD	licenses	as	following,	is	the	year	of	the	copyright.	As	published	in	BSD,	is
"Regents	of	the	University	of	California".	Prior	BSD	LicenseAuthorRegents	of	the	University	of	CaliforniaPublisherPublic	domainPublished1988SPDX	identifierBSD-4.3TAHOEDebian	FSG	compatibleYesOSI	approvedNoGPL	compatibleNoCopyleftNoLinking	from	code	with	a	different	licenceYes	Some	releases	of	BSD	prior	to	the	adoption	of	the	4-
clause	BSD	license	used	a	license	that	is	clearly	ancestral	to	the	4-clause	BSD	license.	These	releases	include	some	parts	of	4.3BSD-Tahoe	(1988),	about	1000	files,[1]	and	Net/1	(1989).	Although	largely	replaced	by	the	4-clause	license,	this	license	can	be	found	in	4.3BSD-Reno,	Net/2,	and	4.4BSD-Alpha.	Copyright	(c)	.	All	rights	reserved.
Redistribution	and	use	in	source	and	binary	forms	are	permitted	provided	that	the	above	copyright	notice	and	this	paragraph	are	duplicated	in	all	such	forms	and	that	any	documentation,	advertising	materials,	and	other	materials	related	to	such	distribution	and	use	acknowledge	that	the	software	was	developed	by	the	.	The	name	of	the	may	not	be
used	to	endorse	or	promote	products	derived	from	this	software	without	specific	prior	written	permission.	THIS	SOFTWARE	IS	PROVIDED	`'AS	IS″	AND	WITHOUT	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
BSD	LicenseAuthorRegents	of	the	University	of	CaliforniaPublisherPublic	domainPublished1990SPDX	identifierBSD-4-Clause(see	list	for	more[2])Debian	FSG	compatibleYes[3]FSF	approvedYes[4]OSI	approvedNo[5]GPL	compatibleNo[4]CopyleftNo[4]Linking	from	code	with	a	different	licenceYes	The	original	BSD	license	contained	a	clause	not	found
in	later	licenses,	known	as	the	"advertising	clause".	This	clause	eventually	became	controversial,	as	it	required	authors	of	all	works	deriving	from	a	BSD-licensed	work	to	include	an	acknowledgment	of	the	original	source	in	all	advertising	material.	This	was	clause	number	3	in	the	original	license	text:[6]	Copyright	(c)	,	All	rights	reserved.
Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted	provided	that	the	following	conditions	are	met:	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of
conditions	and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.	All	advertising	materials	mentioning	features	or	use	of	this	software	must	display	the	following	acknowledgement:	This	product	includes	software	developed	by	the	.	Neither	the	name	of	the	nor	the	names	of	its	contributors	may	be	used
to	endorse	or	promote	products	derived	from	this	software	without	specific	prior	written	permission.	THIS	SOFTWARE	IS	PROVIDED	BY	AS	IS	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND
ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.[6]	This	clause	was	objected	to	on	the	grounds	that	as	people	changed	the	license	to
reflect	their	name	or	organization	it	led	to	escalating	advertising	requirements	when	programs	were	combined	in	a	software	distribution:	every	occurrence	of	the	license	with	a	different	name	required	a	separate	acknowledgment.	In	arguing	against	it,	Richard	Stallman	has	stated	that	he	counted	75	such	acknowledgments	in	a	1997	version	of
NetBSD.[7]	In	addition,	the	clause	presented	a	legal	problem	for	those	wishing	to	publish	BSD-licensed	software	which	relies	upon	separate	programs	using	the	GNU	GPL:	the	advertising	clause	is	incompatible	with	the	GPL,	which	does	not	allow	the	addition	of	restrictions	beyond	those	it	already	imposes;	because	of	this,	the	GPL's	publisher,	the	Free
Software	Foundation,	recommends	developers	not	use	the	license,	though	it	states	there	is	no	reason	not	to	use	software	already	using	it.[4]	See	also:	University	of	Illinois/NCSA	Open	Source	License	New	BSD	LicenseAuthorRegents	of	the	University	of	CaliforniaPublisherPublic	domainPublished22	July	1999[6]SPDX	identifierBSD-3-Clause(see	list	for
more[2])Debian	FSG	compatibleYes[3]FSF	approvedYes[8]OSI	approvedYes[5]GPL	compatibleYes[8]CopyleftNo[8]Linking	from	code	with	a	different	licenceYes	The	advertising	clause	was	removed	from	the	license	text	in	the	official	BSD	license	on	July	22,	1999,	by	William	Hoskins,	Director	of	the	Office	of	Technology	Licensing	for	UC	Berkeley.[6][9]
[10]	On	January	31,	2012,	UC	Berkeley	Executive	Director	of	the	Office	of	Intellectual	Property	and	Industry	Alliances	established	that	licensees	and	distributors	are	no	longer	required	to	include	the	acknowledgement	within	advertising	materials.	Accordingly,	the	advertising	clause	3	of	the	original	4-clause	BSD	license	for	any	and	all	software
officially	licensed	under	a	UC	Berkeley	version	of	the	BSD	license,	was	deleted	in	its	entirety.[11]	Other	BSD	distributions	removed	the	clause,	but	many	similar	clauses	remain	in	BSD-derived	code	from	other	sources,	and	unrelated	code	using	a	derived	license.	While	the	original	license	is	sometimes	referred	to	as	the	"BSD-old",	the	resulting	3-clause
version	is	sometimes	referred	to	by	"BSD-new."	Other	names	include	new	BSD,	"revised	BSD",	"BSD-3",	or	"3-clause	BSD".	This	version	has	been	vetted	as	an	Open	source	license	by	the	OSI	as	"The	BSD	License".[5]	The	Free	Software	Foundation,	which	refers	to	the	license	as	the	"Modified	BSD	License",	states	that	it	is	compatible	with	the	GNU
GPL.	The	FSF	encourages	users	to	be	specific	when	referring	to	the	license	by	name	(i.e.	not	simply	referring	to	it	as	"a	BSD	license"	or	"BSD-style")	to	avoid	confusion	with	the	original	BSD	license.[8]	This	version	allows	unlimited	redistribution	for	any	purpose	as	long	as	its	copyright	notices	and	the	license's	disclaimers	of	warranty	are	maintained.
The	license	also	contains	a	clause	restricting	use	of	the	names	of	contributors	for	endorsement	of	a	derived	work	without	specific	permission.	Copyright	Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted	provided	that	the	following	conditions	are	met:	Redistributions	of	source	code	must	retain	the	above
copyright	notice,	this	list	of	conditions	and	the	following	disclaimer.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.	Neither	the	name	of	the	copyright	holder	nor	the	names	of	its	contributors	may	be
used	to	endorse	or	promote	products	derived	from	this	software	without	specific	prior	written	permission.	THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.[8]	"FreeBSD	License"	redirects	here.	For	documentation,	see	FreeBSD	Documentation	License.	See	also:	ISC	license	and	MIT	License	FreeBSD	LicenseAuthorThe	FreeBSD	ProjectPublisherThe	FreeBSD	ProjectPublishedApril	1999	or	earlierSPDX	identifierBSD-2-Clause(see	list	for	more[2])Debian	FSG	compatibleYesFSF
approvedYes[12]OSI	approvedYes[5]GPL	compatibleYes[12]CopyleftNo[12]Linking	from	code	with	a	different	licenceYes	An	even	more	simplified	version	has	come	into	use,	primarily	known	for	its	usage	in	FreeBSD.[13]	It	was	in	use	there	as	early	as	29	April	1999[14]	and	likely	well	before.	The	primary	difference	between	it	and	the	New	BSD	(3-
clause)	License	is	that	it	omits	the	non-endorsement	clause.	The	FreeBSD	version	of	the	license	also	adds	a	further	disclaimer	about	views	and	opinions	expressed	in	the	software,[15]	though	this	is	not	commonly	included	by	other	projects.	The	Free	Software	Foundation,	which	refers	to	the	license	as	the	FreeBSD	License,	states	that	it	is	compatible
with	the	GNU	GPL.	In	addition,	the	FSF	encourages	users	to	be	specific	when	referring	to	the	license	by	name	(i.e.	not	simply	referring	to	it	as	"a	BSD	license"	or	"BSD-style"),	as	it	does	with	the	modified/new	BSD	license,	to	avoid	confusion	with	the	original	BSD	license.[12]	Copyright	(c)	,	Redistribution	and	use	in	source	and	binary	forms,	with	or
without	modification,	are	permitted	provided	that	the	following	conditions	are	met:	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.	THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR
BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.[13]	Other	projects,	such	as
NetBSD,	use	a	similar	2-clause	license.[16]	This	version	has	been	vetted	as	an	Open	source	license	by	the	OSI	as	the	"Simplified	BSD	License."[5]	The	ISC	license	without	the	'and/or'	wording	is	functionally	equivalent,	and	endorsed	by	the	OpenBSD	project	as	a	license	template	for	new	contributions.[17]	BSD	Zero	Clause	LicenseAuthorRob
LandleyPublished2013SPDX	identifier0BSDDebian	FSG	compatibleYesFSF	approvedYes[18]OSI	approvedYes[19]GPL	compatibleYes[18]CopyleftNoLinking	from	code	with	a	different	licenceYes	The	BSD	0-clause	license	goes	further	than	the	2-clause	license	by	dropping	the	requirements	to	include	the	copyright	notice,	license	text,	or	disclaimer	in
either	source	or	binary	forms.	Doing	so	forms	a	public-domain-equivalent	license,[20]	the	same	way	as	MIT	No	Attribution	License.[citation	needed]	It	is	known	as	"0BSD",	"Zero-Clause	BSD",	or	"Free	Public	License	1.0.0".[21][22]	It	was	created	by	Rob	Landley	and	first	used	in	Toybox	when	he	was	disappointed	after	using	the	GNU	General	Public
License	in	BusyBox.[23]	Copyright	(C)	[year]	by	[copyright	holder]	Permission	to	use,	copy,	modify,	and/or	distribute	this	software	for	any	purpose	with	or	without	fee	is	hereby	granted.	THE	SOFTWARE	IS	PROVIDED	"AS	IS"	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE	INCLUDING	ALL	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS.	IN	NO	EVENT	SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	SPECIAL,	DIRECT,	INDIRECT,	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER
TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.[22]	The	SPDX	License	List	contains	extra	BSD	license	variations.	Examples	include:[2]	BSD-1-Clause,	a	license	with	only	the	source	code	retaining	clause,	used	by	Berkeley	Software	Design	in	the	1990s,[24][25]	and	later	used	by
the	Boost	Software	License.	OSI	approved	since	2020.[26]	BSD-2-Clause-Patent,	a	variation	of	BSD-2-Clause	with	a	patent	grant.	OSI	approved	since	2017.[27]	BSD-3-Clause-No-Nuclear-Warranty,	a	variation	of	BSD-3-Clause	that	adds	that	a	piece	of	software	is	not	licensed	for	use	in	a	nuclear	facility.	Main	article:	License	compatibility	The	FreeBSD
project	argues	on	the	advantages	of	BSD-style	licenses	for	companies	and	commercial	use-cases	due	to	their	license	compatibility	with	proprietary	licenses	and	general	flexibility,	stating	that	the	BSD-style	licenses	place	only	"minimal	restrictions	on	future	behavior"	and	are	not	"legal	time-bombs",	unlike	copyleft	licenses.[28]	The	BSD	License	allows
proprietary	use	and	allows	the	software	released	under	the	license	to	be	incorporated	into	proprietary	products.	Works	based	on	the	material	may	be	released	under	a	proprietary	license	as	closed	source	software,	allowing	usual	commercial	usages	under	them.	The	3-clause	BSD	license,	like	most	permissive	licenses,	is	compatible	with	almost	all
FOSS	licenses	(and	as	well	proprietary	licenses).[29][30]	Two	variants	of	the	license,	the	New	BSD	License/Modified	BSD	License	(3-clause),[8]	and	the	Simplified	BSD	License/FreeBSD	License	(2-clause)[12]	have	been	verified	as	GPL-compatible	free	software	licenses	by	the	Free	Software	Foundation,	and	have	been	vetted	as	open	source	licenses	by
the	Open	Source	Initiative.[5]	The	original,	4-clause	BSD	license	has	not	been	accepted	as	an	open	source	license	and,	although	the	original	is	considered	to	be	a	free	software	license	by	the	FSF,	the	FSF	does	not	consider	it	to	be	compatible	with	the	GPL	due	to	the	advertising	clause.[4]	Over	the	years	I've	become	convinced	that	the	BSD	license	is
great	for	code	you	don't	care	about.	I'll	use	it	myself.	If	there's	a	library	routine	that	I	just	want	to	say	'hey,	this	is	useful	to	anybody	and	I'm	not	going	to	maintain	this,'	I'll	put	it	under	the	BSD	license.	--	Linus	Torvalds	at	LinuxCon	2016[31]	The	BSD	license	family	is	one	of	the	oldest	and	most	broadly	used	license	families	in	the	free	and	open-source
software	ecosystem,	and	has	been	the	inspiration	for	a	number	of	other	licenses.	Many	FOSS	software	projects	use	a	BSD	license,	for	instance	the	BSD	OS	family	(FreeBSD	etc.),	Google's	Bionic	or	Toybox.	As	of	2015[update]	the	BSD	3-clause	license	ranked	in	popularity	number	five	according	to	Black	Duck	Software[32]	and	sixth	according	to
GitHub	data.[33]	Free	and	open-source	software	portal	Comparison	of	free	and	open-source	software	licenses	Software	using	the	BSD	license	(category)	^	Bostic,	Keith	(15	June	1988).	"4.3BSD-tahoe	release".	Newsgroup:	comp.sys.tahoe.	Retrieved	5	December	2021.	^	a	b	c	d	"SPDX	License	List".	spdx.org.	SPDX	Working	Group.	^	a	b	"License
information".	Debian.	Retrieved	18	February	2010.	^	a	b	c	d	e	"Original	BSD	license".	Various	Licenses	and	Comments	about	Them.	Free	Software	Foundation.	Retrieved	2	October	2010.	^	a	b	c	d	e	f	"The	BSD	License:Licensing".	Open	Source	Initiative.	31	October	2006.	Archived	from	the	original	on	29	November	2009.	Retrieved	6	December	2009.
^	a	b	c	d	"To	All	Licensees,	Distributors	of	Any	Version	of	BSD".	University	of	California,	Berkeley.	22	July	1999.	Retrieved	15	November	2006.	^	Richard	Stallman.	"The	BSD	License	Problem".	Free	Software	Foundation.	Archived	from	the	original	on	12	November	2006.	Retrieved	15	November	2006.	^	a	b	c	d	e	f	"Modified	BSD	license".	Various
Licenses	and	Comments	about	Them.	Free	Software	Foundation.	Retrieved	2	October	2010.	^	"Berkeley	removes	Advertising	Clause	–	Slashdot".	bsd.slashdot.org.	2	September	1999.	Retrieved	2	September	2021.	^	Comparing	the	BSD	and	GPL	Licenses	on	Technology	Innovation	Management	Review	by	Bruce	Montague	(on	October	2007)	^	Katz,
Michael.	"Executive	Director,	Office	of	Intellectual	Property	and	Industry	Research	Alliances,	University	of	California,	Berkeley"	(PDF).	Office	of	Intellectual	Property	and	Industry	Research	Alliances	(IPIRA).	University	of	California,	Berkeley.	Retrieved	19	November	2024.	^	a	b	c	d	e	"FreeBSD	license".	Various	Licenses	and	Comments	about	Them.
Free	Software	Foundation.	Retrieved	2	October	2010.	^	a	b	"The	FreeBSD	Copyright".	The	FreeBSD	Project.	Archived	from	the	original	on	25	November	2009.	Retrieved	6	December	2009.	^	"The	FreeBSD	Copyright	(as	available	at	archive.org)".	The	FreeBSD	Foundation.	Archived	from	the	original	on	29	April	1999.	Retrieved	7	January	2017.{{cite
web}}:	CS1	maint:	bot:	original	URL	status	unknown	(link)	^	"The	FreeBSD	Copyright".	freebsd.org.	Retrieved	25	March	2020.	^	"NetBSD	Licensing	and	Redistribution".	The	NetBSD	Foundation.	Retrieved	6	December	2009.	^	"OpenBSD	Copyright	Policy".	Retrieved	17	July	2016.	^	a	b	"Zero-clause	license".	Various	Licenses	and	Comments	about
Them.	Free	Software	Foundation.	Retrieved	2	October	2010.	^	"[License-review]	Please	rename	"Free	Public	License-1.0.0"	to	0BSD".	Retrieved	15	February	2019.	^	"BSD	0-Clause	License	(0BSD)	Explained	in	Plain	English".	tldrlegal.com.	Retrieved	15	February	2019.	^	"BSD	Zero	Clause	License".	spdx.org.	Retrieved	19	February	2021.	^	a	b	"Zero-
Clause	BSD	/	Free	Public	License	1.0.0	(0BSD)".	opensource.org.	5	December	2015.	Retrieved	19	February	2021.	^	Toybox	vs	BusyBox	-	Rob	Landley,	hobbyist,	retrieved	28	April	2023	^	"BSD	1-Clause	License".	Software	Package	Data	Exchange	(SPDX).	2018.	Retrieved	30	May	2022.	^	"Log	of	/head/include/ifaddrs.h".	svnweb.freebsd.org.	Retrieved
30	May	2022.	^	"1-clause	BSD	License	–	Open	Source	Initiative".	Open	Source	Initiative.	13	March	2020.	Retrieved	26	March	2024.	^	"BSD+Patent	–	Open	Source	Initiative".	Open	Source	Initiative.	4	April	2017.	Retrieved	26	March	2024.	^	Montague,	Bruce	(13	November	2013).	"Why	you	should	use	a	BSD	style	license	for	your	Open	Source	Project
–	GPL	Advantages	and	Disadvantages".	FreeBSD.	Retrieved	28	November	2015.	In	contrast	to	the	GPL,	which	is	designed	to	prevent	the	proprietary	commercialization	of	Open	Source	code,	the	BSD	license	places	minimal	restrictions	on	future	behavior.	This	allows	BSD	code	to	remain	Open	Source	or	become	integrated	into	commercial	solutions,	as
a	project's	or	company's	needs	change.	In	other	words,	the	BSD	license	does	not	become	a	legal	time-bomb	at	any	point	in	the	development	process.	In	addition,	since	the	BSD	license	does	not	come	with	the	legal	complexity	of	the	GPL	or	LGPL	licenses,	it	allows	developers	and	companies	to	spend	their	time	creating	and	promoting	good	code	rather
than	worrying	if	that	code	violates	licensing.	^	Hanwell,	Marcus	D.	(28	January	2014).	"Should	I	use	a	permissive	license?	Copyleft?	Or	something	in	the	middle?".	opensource.com.	Retrieved	30	May	2015.	Permissive	licensing	simplifies	things	One	reason	the	business	world,	and	more	and	more	developers	[...],	favor	permissive	licenses	is	in	the
simplicity	of	reuse.	The	license	usually	only	pertains	to	the	source	code	that	is	licensed	and	makes	no	attempt	to	infer	any	conditions	upon	any	other	component,	and	because	of	this	there	is	no	need	to	define	what	constitutes	a	derived	work.	I	have	also	never	seen	a	license	compatibility	chart	for	permissive	licenses;	it	seems	that	they	are	all
compatible.	^	"Licence	Compatibility	and	Interoperability".	Open-Source	Software	–	Develop,	share,	and	reuse	open	source	software	for	public	administrations.	joinup.ec.europa.eu.	Archived	from	the	original	on	17	June	2015.	Retrieved	30	May	2015.	The	licences	for	distributing	free	or	open	source	software	(FOSS)	are	divided	in	two	families:
permissive	and	copyleft.	Permissive	licences	(BSD,	MIT,	X11,	Apache,	Zope)	are	generally	compatible	and	interoperable	with	most	other	licences,	tolerating	to	merge,	combine	or	improve	the	covered	code	and	to	re-distribute	it	under	many	licences	(including	non-free	or	"proprietary").	^	Torvalds	at	LinuxCon	Part	III:	Permissive	Licenses	and	Org
Charts	FOSS	Force,	2016	^	"Top	20	licenses".	Black	Duck	Software.	19	November	2015.	Archived	from	the	original	on	19	July	2016.	Retrieved	19	November	2015.	1.	MIT	license	24%,	2.	GNU	General	Public	License	(GPL)	2.0	23%,	3.	Apache	License	16%,	4.	GNU	General	Public	License	(GPL)	3.0	9%,	5.	BSD	License	2.0	(3-clause,	New	or	Revised)
License	6%,	6.	GNU	Lesser	General	Public	License	(LGPL)	2.1	5%,	7.	Artistic	License	(Perl)	4%,	8.	GNU	Lesser	General	Public	License	(LGPL)	3.0	2%,	9.	Microsoft	Public	License	2%,	10.	Eclipse	Public	License	(EPL)	2%	^	Balter,	Ben	(9	March	2015).	"Open	source	license	usage	on	GitHub.com".	github.com.	Retrieved	21	November	2015.	"1	MIT
44.69%,	2	Other	15.68%,	3	GPLv2	12.96%,	4	Apache	11.19%,	5	GPLv3	8.88%,	6	BSD	3-clause	4.53%,	7	Unlicense	1.87%,	8	BSD	2-clause	1.70%,	9	LGPLv3	1.30%,	10	AGPLv3	1.05%	Twenty	Years	of	Berkeley	Unix:	From	AT&T-Owned	to	Freely	Redistributable,	Marshall	Kirk	McKusick,	in:	Open	Sources:	Voices	from	the	Open	Source	Revolution,
O'Reilly	1999	The	Amazing	Disappearing	BSD	License	BSD	License	Definition	–	by	The	Linux	Information	Project	(LINFO)	Retrieved	from	"	Computer	software	installed	on	multiple	computing	platforms	"Cross-platform"	redirects	here.	For	the	railway	station	interchange,	see	cross-platform	interchange.	For	the	game	term,	see	cross-platform	play.
"Multi-platform"	redirects	here.	For	the	mode	of	storytelling	in	television,	see	multi-platform	television.	Within	computing,	cross-platform	software	(also	called	multi-platform	software,	platform-agnostic	software,	or	platform-independent	software)	is	computer	software	that	is	designed	to	work	in	several	computing	platforms.[1]	Some	cross-platform
software	requires	a	separate	build	for	each	platform,	but	some	can	be	directly	run	on	any	platform	without	special	preparation,	being	written	in	an	interpreted	language	or	compiled	to	portable	bytecode	for	which	the	interpreters	or	run-time	packages	are	common	or	standard	components	of	all	supported	platforms.[2]	For	example,	a	cross-platform
application	may	run	on	Linux,	macOS	and	Microsoft	Windows.	Cross-platform	software	may	run	on	many	platforms,	or	as	few	as	two.	Some	frameworks	for	cross-platform	development	are	Codename	One,	ArkUI-X,	Kivy,	Qt,	GTK,	Flutter,	NativeScript,	Xamarin,	Apache	Cordova,	Ionic,	and	React	Native.[3]	Main	article:	Computing	platform	Platform
can	refer	to	the	type	of	processor	(CPU)	or	other	hardware	on	which	an	operating	system	(OS)	or	application	runs,	the	type	of	OS,	or	a	combination	of	the	two.[4]	An	example	of	a	common	platform	is	Android	which	runs	on	the	ARM	architecture	family.	Other	well-known	platforms	are	Linux/Unix,	macOS	and	Windows,	these	are	all	cross-platform.[4]
Applications	can	be	written	to	depend	on	the	features	of	a	particular	platform—either	the	hardware,	OS,	or	virtual	machine	(VM)	it	runs	on.	For	example,	the	Java	platform	is	a	common	VM	platform	which	runs	on	many	OSs	and	hardware	types.	A	hardware	platform	can	refer	to	an	instruction	set	architecture.	For	example:	ARM	or	the	x86
architecture.	These	machines	can	run	different	operating	systems.	Smartphones	and	tablets	generally	run	ARM	architecture,	these	often	run	Android	or	iOS	and	other	mobile	operating	systems.	A	software	platform	can	be	either	an	operating	system	(OS)	or	programming	environment,	though	more	commonly	it	is	a	combination	of	both.	An	exception	is
Java,	which	uses	an	OS-independent	virtual	machine	(VM)	to	execute	Java	bytecode.	Some	software	platforms	are:	Android	(ARM64)	ChromeOS	(ARM32,	ARM64,	IA-32,	x86-64)	Common	Language	Infrastructure	(CLI)	by	Microsoft,	implemented	in:	The	legacy	.NET	Framework	that	works	only	on	Microsoft	Windows.	The	newer	.NET	framework
(simply	called	".NET")	that	works	across	Microsoft	Windows,	macOS,	and	Linux.	Other	implementations	such	as	Mono	(formerly	by	Novell	and	Xamarin[5])	HarmonyOS	(ARM64,	RISC-V,	x86,	x64,	and	LoongArch)	iOS	((ARMv8-A))	iPadOS	(ARMv8-A)	Java	Linux	(Alpha,	ARC,	ARM,	C-Sky,	Hexagon,	LoongArch,	m68k,	Microblaze,	MIPS,	Nios	II,
OpenRISC,	PA-RISC,	PowerPC,	RISC-V,	s390,	SuperH,	SPARC,	x86,	Xtensa)	macOS	x86,	ARM	(Apple	silicon)	Microsoft	Windows	(IA-32,	x86-64,	ARM,	ARM64)	PlayStation	4	(x86),	PlayStation	3	(PowerPC)	and	PlayStation	Vita	(ARM)	Solaris	(SPARC,	x86)	SPARC	Unix	(many	platforms	since	1969)	Web	browsers	–	mostly	compatible	with	each	other,
running	JavaScript	web-apps	Xbox	Minor,	historical	AmigaOS	(m68k),	AmigaOS	4	(PowerPC),	AROS	(x86,	PowerPC,	m68k),	MorphOS	(PowerPC)	Atari	TOS,	MiNT	BSD	(many	platforms;	see	NetBSDnet,[clarification	needed]	for	example)	DOS-type	systems	on	the	x86:	MS-DOS,	PC	DOS,	DR-DOS,	FreeDOS	OS/2,	eComStation	BeOS	(PowerPC,	x86)	Main
article:	Java	(software	platform)	The	Java	language	is	typically	compiled	to	run	on	a	VM	that	is	part	of	the	Java	platform.	The	Java	virtual	machine	(Java	VM,	JVM)	is	a	CPU	implemented	in	software,	which	runs	all	Java	code.	This	enables	the	same	code	to	run	on	all	systems	that	implement	a	JVM.	Java	software	can	be	executed	by	a	hardware-based	Java
processor.	This	is	used	mostly	in	embedded	systems.	Java	code	running	in	the	JVM	has	access	to	OS-related	services,	like	disk	input/output	(I/O)	and	network	access,	if	the	appropriate	privileges	are	granted.	The	JVM	makes	the	system	calls	on	behalf	of	the	Java	application.	This	lets	users	to	decide	the	appropriate	protection	level,	depending	on	an
access-control	list	(ACL).	For	example,	disk	and	network	access	is	usually	enabled	for	desktop	applications,	but	not	for	browser-based	applets.	The	Java	Native	Interface	(JNI)	can	also	be	used	to	access	OS-specific	functions,	with	a	loss	of	portability.	Currently,	Java	Standard	Edition	software	can	run	on	Microsoft	Windows,	macOS,	several	Unix-like
OSs,	and	several	real-time	operating	systems	for	embedded	devices.	For	mobile	applications,	browser	plugins	are	used	for	Windows	and	Mac	based	devices,	and	Android	has	built-in	support	for	Java.	There	are	also	subsets	of	Java,	such	as	Java	Card	or	Java	Platform,	Micro	Edition,	designed	for	resource-constrained	devices.	For	software	to	be
considered	cross-platform,	it	must	function	on	more	than	one	computer	architecture	or	OS.	Developing	such	software	can	be	a	time-consuming	task	because	different	OSs	have	different	application	programming	interfaces	(API).	Software	written	for	one	OS	may	not	automatically	work	on	all	architectures	that	OS	supports.	Just	because	software	is
written	in	a	popular	programming	language	such	as	C	or	C++,	it	does	not	mean	it	will	run	on	all	OSs	that	support	that	language—or	even	on	different	versions	of	the	same	OS.	Web	applications	are	typically	described	as	cross-platform	because,	ideally,	they	are	accessible	from	any	web	browser:	the	browser	is	the	platform.	Web	applications	generally
employ	a	client–server	model,	but	vary	widely	in	complexity	and	functionality.	It	can	be	hard	to	reconcile	the	desire	for	features	with	the	need	for	compatibility.	Basic	web	applications	perform	all	or	most	processing	from	a	stateless	server,	and	pass	the	result	to	the	client	web	browser.	All	user	interaction	with	the	application	consists	of	simple
exchanges	of	data	requests	and	server	responses.	This	type	of	application	was	the	norm	in	the	early	phases	of	World	Wide	Web	application	development.	Such	applications	follow	a	simple	transaction	model,	identical	to	that	of	serving	static	web	pages.	Today,	they	are	still	relatively	common,	especially	where	cross-platform	compatibility	and	simplicity
are	deemed	more	critical	than	advanced	functionality.	Prominent	examples	of	advanced	web	applications	include	the	Web	interface	to	Gmail	and	Google	Maps.	Such	applications	routinely	depend	on	additional	features	found	only	in	the	more	recent	versions	of	popular	web	browsers.	These	features	include	Ajax,	JavaScript,	Dynamic	HTML,	SVG,	and
other	components	of	rich	web	applications.	Because	of	the	competing	interests	of	compatibility	and	functionality,	numerous	design	strategies	have	emerged.	Many	software	systems	use	a	layered	architecture	where	platform-dependent	code	is	restricted	to	the	upper-	and	lowermost	layers.	Graceful	degradation	attempts	to	provide	the	same	or	similar
functionality	to	all	users	and	platforms,	while	diminishing	that	functionality	to	a	least	common	denominator	for	more	limited	client	browsers.	For	example,	a	user	attempting	to	use	a	limited-feature	browser	to	access	Gmail	may	notice	that	Gmail	switches	to	basic	mode,	with	reduced	functionality	but	still	of	use.	Some	software	is	maintained	in	distinct
codebases	for	different	(hardware	and	OS)	platforms,	with	equivalent	functionality.	This	requires	more	effort	to	maintain	the	code,	but	can	be	worthwhile	where	the	amount	of	platform-specific	code	is	high.	This	strategy	relies	on	having	one	codebase	that	may	be	compiled	to	multiple	platform-specific	formats.	One	technique	is	conditional	compilation.
With	this	technique,	code	that	is	common	to	all	platforms	is	not	repeated.	Blocks	of	code	that	are	only	relevant	to	certain	platforms	are	made	conditional,	so	that	they	are	only	interpreted	or	compiled	when	needed.	Another	technique	is	separation	of	functionality,	which	disables	functionality	not	supported	by	browsers	or	OSs,	while	still	delivering	a
complete	application	to	the	user.	(See	also:	Separation	of	concerns.)	This	technique	is	used	in	web	development	where	interpreted	code	(as	in	scripting	languages)	can	query	the	platform	it	is	running	on	to	execute	different	blocks	conditionally.[6]	Third-party	libraries	attempt	to	simplify	cross-platform	capability	by	hiding	the	complexities	of	client
differentiation	behind	a	single,	unified	API,	at	the	expense	of	vendor	lock-in.	Responsive	web	design	(RWD)	is	a	Web	design	approach	aimed	at	crafting	the	visual	layout	of	sites	to	provide	an	optimal	viewing	experience—easy	reading	and	navigation	with	a	minimum	of	resizing,	panning,	and	scrolling—across	a	wide	range	of	devices,	from	mobile
phones	to	desktop	computer	monitors.	Little	or	no	platform-specific	code	is	used	with	this	technique.	Cross-platform	applications	need	much	more	integration	testing.	Some	web	browsers	prohibit	installation	of	different	versions	on	the	same	machine.	There	are	several	approaches	used	to	target	multiple	platforms,	but	all	of	them	result	in	software
that	requires	substantial	manual	effort	for	testing	and	maintenance.[7]	Techniques	such	as	full	virtualization	are	sometimes	used	as	a	workaround	for	this	problem.	Tools	such	as	the	Page	Object	Model	allow	cross-platform	tests	to	be	scripted	so	that	one	test	case	covers	multiple	versions	of	an	app.	If	different	versions	have	similar	user	interfaces,	all
can	be	tested	with	one	test	case.	Web	applications	are	becoming	increasingly	popular	but	many	computer	users	still	use	traditional	application	software	which	does	not	rely	on	a	client/web-server	architecture.	The	distinction	between	traditional	and	web	applications	is	not	always	clear.	Features,	installation	methods	and	architectures	for	web	and
traditional	applications	overlap	and	blur	the	distinction.	Nevertheless,	this	simplifying	distinction	is	a	common	and	useful	generalization.	Traditional	application	software	has	been	distributed	as	binary	files,	especially	executable	files.	Executables	only	support	the	platform	they	were	built	for—which	means	that	a	single	cross-platform	executable	could
be	very	bloated	with	code	that	never	executes	on	a	particular	platform.	Instead,	generally	there	is	a	selection	of	executables,	each	built	for	one	platform.	For	software	that	is	distributed	as	a	binary	executable,	such	as	that	written	in	C	or	C++,	there	must	be	a	software	build	for	each	platform,	using	a	toolset	that	translates—transcompiles—a	single
codebase	into	multiple	binary	executables.	For	example,	Firefox,	an	open-source	web	browser,	is	available	on	Windows,	macOS	(both	PowerPC	and	x86	through	what	Apple	Inc.	calls	a	Universal	binary),	Linux,	and	BSD	on	multiple	computer	architectures.	The	four	platforms	(in	this	case,	Windows,	macOS,	Linux,	and	BSD)	are	separate	executable
distributions,	although	they	come	largely	from	the	same	source	code.	In	rare	cases,	executable	code	built	for	several	platforms	is	combined	into	a	single	executable	file	called	a	fat	binary.	The	use	of	different	toolsets	may	not	be	enough	to	build	a	working	executables	for	different	platforms.	In	this	case,	programmers	must	port	the	source	code	to	the
new	platform.	For	example,	an	application	such	as	Firefox,	which	already	runs	on	Windows	on	the	x86	family,	can	be	modified	and	re-built	to	run	on	Linux	on	the	x86	(and	potentially	other	architectures)	as	well.	The	multiple	versions	of	the	code	may	be	stored	as	separate	codebases,	or	merged	into	one	codebase.	An	alternative	to	porting	is	cross-
platform	virtualization,	where	applications	compiled	for	one	platform	can	run	on	another	without	modification	of	the	source	code	or	binaries.	As	an	example,	Apple's	Rosetta,	which	is	built	into	Intel-based	Macintosh	computers,	runs	applications	compiled	for	the	previous	generation	of	Macs	that	used	PowerPC	CPUs.	Another	example	is	IBM	PowerVM
Lx86,	which	allows	Linux/x86	applications	to	run	unmodified	on	the	Linux/Power	OS.	Example	of	cross-platform	binary	software:	The	LibreOffice	office	suite	is	built	for	Microsoft	Windows,	macOS,	Linux,	FreeBSD,	NetBSD,	OpenBSD,	Android,	iOS,	iPadOS,	ChromeOS,	web-based	Collabora	Online	and	many	others.[8][9]	Many	of	these	are	supported
on	several	hardware	platforms	with	processor	architectures	including	IA-32,	x86-64,	ARM	(ARMel,	ARMhf,	ARM64),	MIPS,	MIPSel,	PowerPC,	ppc64le,	and	S390x[9][10]	A	script	can	be	considered	to	be	cross-platform	if	its	interpreter	is	available	on	multiple	platforms	and	the	script	only	uses	the	facilities	built	into	the	language.	For	example,	a	script
written	in	Python	for	a	Unix-like	system	will	likely	run	with	little	or	no	modification	on	Windows,	because	Python	also	runs	on	Windows;	indeed	there	are	many	implementations	(e.g.	IronPython	for	.NET	Framework).	The	same	goes	for	many	of	the	open-source	scripting	languages.	Unlike	binary	executable	files,	the	same	script	can	be	used	on	all
computers	that	have	software	to	interpret	the	script.	This	is	because	the	script	is	generally	stored	in	plain	text	in	a	text	file.	There	may	be	some	trivial	issues,	such	as	the	representation	of	a	new	line	character.	Some	popular	cross-platform	scripting	languages	are:	bash	–	A	Unix	shell	commonly	run	on	Linux	and	other	modern	Unix-like	systems,	as	well
as	on	Windows	via	the	Cygwin	POSIX	compatibility	layer,	Git	for	Windows,	or	the	Windows	Subsystem	for	Linux.	Perl	–	First	released	in	1987.	Used	for	CGI	programming,	small	system	administration	tasks,	and	more.	PHP	–	Mostly	used	for	web	applications.	Python	–	A	language	which	focuses	on	rapid	application	development	and	ease	of	writing,
instead	of	run-time	efficiency.	Ruby	–	An	object-oriented	language	which	aims	to	be	easy	to	read.	Can	also	be	used	on	the	web	through	Ruby	on	Rails.	Tcl	–	A	dynamic	programming	language,	suitable	for	a	wide	range	of	uses,	including	web	and	desktop	applications,	networking,	administration,	testing	and	many	more.	Cross-platform	or	multi-platform
is	a	term	that	can	also	apply	to	video	games	released	on	a	range	of	video	game	consoles.	Examples	of	cross-platform	games	include:	Miner	2049er,	Tomb	Raider:	Legend,	FIFA	series,	NHL	series	and	Minecraft.	Each	has	been	released	across	a	variety	of	gaming	platforms,	such	as	the	Wii,	PlayStation	3,	Xbox	360,	personal	computers,	and	mobile
devices.	Some	platforms	are	harder	to	write	for	than	others,	requiring	more	time	to	develop	the	video	game	to	the	same	standard.	To	offset	this,	a	video	game	may	be	released	on	a	few	platforms	first,	then	later	on	others.	Typically,	this	happens	when	a	new	gaming	system	is	released,	because	video	game	developers	need	to	acquaint	themselves	with
its	hardware	and	software.	Some	games	may	not	be	cross-platform	because	of	licensing	agreements	between	developers	and	video	game	console	manufacturers	that	limit	development	to	one	particular	console.	As	an	example,	Disney	could	create	a	game	with	the	intention	of	release	on	the	latest	Nintendo	and	Sony	game	consoles.	Should	Disney
license	the	game	with	Sony	first,	it	may	be	required	to	release	the	game	solely	on	Sony's	console	for	a	short	time	or	indefinitely.	Main	articles:	Cross-platform	play	and	List	of	video	games	that	support	cross-platform	play	Several	developers	have	implemented	ways	to	play	games	online	while	using	different	platforms.	Psyonix,	Epic	Games,	Microsoft,
and	Valve	all	possess	technology	that	allows	Xbox	360	and	PlayStation	3	gamers	to	play	with	PC	gamers,	leaving	the	decision	of	which	platform	to	use	to	consumers.	The	first	game	to	allow	this	level	of	interactivity	between	PC	and	console	games	(Dreamcast	with	specially	produced	keyboard	and	mouse)	was	Quake	3.[11][12]	Games	that	feature	cross-
platform	online	play	include	Rocket	League,	Final	Fantasy	XIV,	Street	Fighter	V,	Killer	Instinct,	Paragon	and	Fable	Fortune,	and	Minecraft	with	its	Better	Together	update	on	Windows	10,	VR	editions,	Pocket	Edition	and	Xbox	One.	Cross-platform	programming	is	the	practice	of	deliberately	writing	software	to	work	on	more	than	one	platform.	There
are	different	ways	to	write	a	cross-platform	application.	One	approach	is	to	create	multiple	versions	of	the	same	software	in	different	source	trees—in	other	words,	the	Microsoft	Windows	version	of	an	application	might	have	one	set	of	source	code	files	and	the	Macintosh	version	another,	while	a	FOSS	*nix	system	might	have	a	third.	While	this	is
straightforward,	compared	to	developing	for	only	one	platform	it	can	cost	much	more	to	pay	a	larger	team	or	release	products	more	slowly.	It	can	also	result	in	more	bugs	to	be	tracked	and	fixed.	Another	approach	is	to	use	software	that	hides	the	differences	between	the	platforms.	This	abstraction	layer	insulates	the	application	from	the	platform.
Such	applications	are	platform	agnostic.	Applications	that	run	on	the	JVM	are	built	this	way.	Some	applications	mix	various	methods	of	cross-platform	programming	to	create	the	final	application.	An	example	is	the	Firefox	web	browser,	which	uses	abstraction	to	build	some	of	the	lower-level	components,	with	separate	source	subtrees	for
implementing	platform-specific	features	(like	the	GUI),	and	the	implementation	of	more	than	one	scripting	language	to	ease	software	portability.	Firefox	implements	XUL,	CSS	and	JavaScript	for	extending	the	browser,	in	addition	to	classic	Netscape-style	browser	plugins.	Much	of	the	browser	itself	is	written	in	XUL,	CSS,	and	JavaScript.	There	are
many	tools[13][14]	available	to	help	the	process	of	cross-platform	programming:	8th:	a	development	language	which	utilizes	Juce	as	its	GUI	layer.	It	currently	supports	Android,	iOS,	Windows,	macOS,	Linux	and	Raspberry	Pi.	Anant	Computing:	A	mobile	application	platform	that	works	in	all	Indian	languages,	including	their	keyboards,	and	also
supports	AppWallet	and	native	performance	in	all	OSs.	AppearIQ:	a	framework	that	supports	the	workflow	of	app	development	and	deployment	in	an	enterprise	environment.	Natively	developed	containers	present	hardware	features	of	the	mobile	devices	or	tablets	through	an	API	to	HTML5	code	thus	facilitating	the	development	of	mobile	apps	that
run	on	different	platforms.	Boden:	a	UI	framework	written	in	C++.	Cairo:	a	free	software	library	used	to	provide	a	vector	graphics-based,	device-independent	API.	It	is	designed	to	provide	primitives	for	2-dimensional	drawing	across	a	number	of	different	backends.	Cairo	is	written	in	C	and	has	bindings	for	many	programming	languages.	Cocos2d:	an
open-source	toolkit	and	game	engine	for	developing	2D	and	simple	3D	cross-platform	games	and	applications.	Codename	One:	an	open-source	Write	Once	Run	Anywhere	(WORA)	framework	for	Java	and	Kotlin	developers.	Delphi:	an	IDE	which	uses	a	Pascal-based	language	for	development.	It	supports	Android,	iOS,	Windows,	macOS,	Linux.	Ecere
SDK:	a	GUI	and	2D/3D	graphics	toolkit	and	IDE,	written	in	eC	and	with	support	for	additional	languages	such	as	C	and	Python.	It	supports	Linux,	FreeBSD,	Windows,	Android,	macOS	and	the	Web	through	Emscripten	or	Binaryen	[Wikidata]	(WebAssembly).	Eclipse:	an	open-source	development	environment.	Implemented	in	Java	with	a	configurable
architecture	which	supports	many	tools	for	software	development.	Add-ons	are	available	for	several	languages,	including	Java	and	C++.	FLTK:	an	open-source	toolkit,	but	more	lightweight	because	it	restricts	itself	to	the	GUI.	Flutter:	A	cross-platform	UI	framework	for	IOS,	Android,	Mac,	Windows	and	developed	by	Google.	fpGUI:	An	open-source
widget	toolkit	that	is	completely	implemented	in	Object	Pascal.	It	currently	supports	Linux,	Windows	and	a	bit	of	Windows	CE.	GeneXus:	A	Windows	rapid	software	development	solution	for	cross-platform	application	creation	and	deployment	based	on	knowledge	representation	and	supporting	C#,	COBOL,	Java	including	Android	and	BlackBerry	smart
devices,	Objective-C	for	Apple	mobile	devices,	RPG,	Ruby,	Visual	Basic,	and	Visual	FoxPro.	GLBasic:	A	BASIC	dialect	and	compiler	that	generates	C++	code.	It	includes	cross	compilers	for	many	platforms	and	supports	numerous	platform	(Windows,	Mac,	Linux,	Android,	iOS	and	some	exotic	handhelds).	Godot:	an	SDK	which	uses	Godot	Engine.	GTK+:
An	open-source	widget	toolkit	for	Unix-like	systems	with	X11	and	Microsoft	Windows.	Haxe:	An	open-source	language.	Juce:	An	application	framework	written	in	C++,	used	to	write	native	software	on	numerous	systems	(Microsoft	Windows,	POSIX,	macOS),	with	no	change	to	the	code.	Kivy:	an	open-source	cross-platform	UI	framework	written	in
Python.	It	supports	Android,	iOS,	Linux,	OS	X,	Windows	and	Raspberry	Pi.	LEADTOOLS:	Cross-platform	SDK	libraries	to	integrate	recognition,	document,	medical,	imaging,	and	multimedia	technologies	into	Windows,	iOS,	macOS,	Android,	Linux	and	web	applications.[15]	LiveCode:	a	commercial	cross-platform	rapid	application	development	language
inspired	by	HyperTalk.	Lazarus:	A	programming	environment	for	the	FreePascal	Compiler.	It	supports	the	creation	of	self-standing	graphical	and	console	applications	and	runs	on	Linux,	MacOSX,	iOS,	Android,	WinCE,	Windows	and	WEB.	Max/MSP:	A	visual	programming	language	that	encapsulates	platform-independent	code	with	a	platform-specific
runtime	environment	into	applications	for	macOS	and	Windows	A	cross-platform	Android	runtime.	It	allows	unmodified	Android	apps	to	run	natively	on	iOS	and	macOS	Mendix:	a	cloud-based	low-code	application	development	platform.	MonoCross:	an	open-source	model–view–controller	design	pattern	where	the	model	and	controller	are	cross-
platform	but	the	view	is	platform-specific.[16]	Mono:	An	open-source	cross-platform	version	of	Microsoft	.NET	(a	framework	for	applications	and	programming	languages)	MoSync:	an	open-source	SDK	for	mobile	platform	app	development	in	the	C++	family.	Mozilla	application	framework:	an	open-source	platform	for	building	macOS,	Windows	and
Linux	applications.	OpenGL:	a	3D	graphics	library.	Pixel	Game	Maker	MV:	A	proprietary	2D	game	development	software	for	Windows	for	developing	Windows	and	Nintendo	Switch	games.	PureBasic:	a	proprietary	language	and	IDE	for	building	macOS,	Windows	and	Linux	applications.	ReNative:	The	universal	development	SDK	to	build	multi-platform
projects	with	React	Native.	Includes	latest	iOS,	tvOS,	Android,	Android	TV,	Web,	Tizen	TV,	Tizen	Watch,	LG	webOS,	macOS/OSX,	Windows,	KaiOS,	Firefox	OS	and	Firefox	TV	platforms.	Qt:	an	application	framework	and	widget	toolkit	for	Unix-like	systems	with	X11,	Microsoft	Windows,	macOS,	and	other	systems—available	under	both	proprietary	and
open-source	licenses.	Simple	and	Fast	Multimedia	Library:	A	multimedia	C++	API	that	provides	low	and	high	level	access	to	graphics,	input,	audio,	etc.	Simple	DirectMedia	Layer:	an	open-source	multimedia	library	written	in	C	that	creates	an	abstraction	over	various	platforms'	graphics,	sound,	and	input	APIs.	It	runs	on	OSs	including	Linux,	Windows
and	macOS	and	is	aimed	at	games	and	multimedia	applications.	Smartface:	a	native	app	development	tool	to	create	mobile	applications	for	Android	and	iOS,	using	WYSIWYG	design	editor	with	JavaScript	code	editor.	Tcl/Tk	Titanium	Mobile:	open	source	cross-platform	framework	for	Android	and	iOS	development.	U++:	a	C++	GUI	framework	for
performance.	It	includes	a	set	of	libraries	(GUI,	SQL,	etc..),	and	IDE.	It	supports	Windows,	macOS	and	Linux.	Unity:	Another	cross-platform	SDK	which	uses	Unity	Engine.	Uno	Platform:	Windows,	macOS,	iOS,	Android,	WebAssembly	and	Linux	using	C#.	Unreal:	A	cross-platform	SDK	which	uses	Unreal	Engine.	V-Play	Engine:	V-Play	is	a	cross-platform
development	SDK	based	on	the	popular	Qt	framework.	V-Play	apps	and	games	are	created	within	Qt	Creator.	WaveMaker:	A	low-code	development	tool	to	create	responsive	web	and	hybrid	mobile	(Android	&	iOS)	applications.	WinDev:	an	Integrated	Development	Environment	for	Windows,	Linux,	.Net	and	Java,	and	web	browers.	Optimized	for
business	and	industrial	applications.	wxWidgets:	an	open-source	widget	toolkit	that	is	also	an	application	framework.[17]	It	runs	on	Unix-like	systems	with	X11,	Microsoft	Windows	and	macOS.	Xojo:	a	RAD	IDE	that	uses	an	object-oriented	programming	language	to	compile	desktop,	web	and	iOS	apps.	Xojo	supports	natively	compiling	to	Windows,
macOS,	iOS	and	Linux,	and	can	also	create	compiled	web	apps	that	are	able	to	be	run	as	standalone	servers	or	through	CGI.	This	section	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(March	2025)	(Learn	how	and
when	to	remove	this	message)	There	are	many	challenges	when	developing	cross-platform	software:	Testing	cross-platform	applications	may	be	considerably	more	complicated,	since	different	platforms	can	exhibit	slightly	different	behaviors	or	subtle	bugs.	This	problem	has	led	some	developers	to	deride	cross-platform	development	as	"write	once,
debug	everywhere",	a	take	on	Sun	Microsystems'	"write	once,	run	anywhere"	marketing	slogan.	Developers	are	often	restricted	to	using	the	lowest	common	denominator	subset	of	features	which	are	available	on	all	platforms.	This	may	hinder	the	application's	performance	or	prohibit	developers	from	using	the	most	advanced	features	of	each	platform.
Different	platforms	often	have	different	user	interface	conventions,	which	cross-platform	applications	do	not	always	accommodate.	For	example,	applications	developed	for	macOS	and	GNOME	are	supposed	to	place	the	most	important	button	on	the	right-hand	side	of	a	window	or	dialog,	whereas	Microsoft	Windows	and	KDE	have	the	opposite
convention.	Though	many	of	these	differences	are	subtle,	a	cross-platform	application	which	does	not	conform	to	these	conventions	may	feel	clunky	or	alien	to	the	user.	When	working	quickly,	such	opposing	conventions	may	even	result	in	data	loss,	such	as	in	a	dialog	box	confirming	whether	to	save	or	discard	changes.	Scripting	languages	and	VM
bytecode	must	be	translated	into	native	executable	code	each	time	they	are	used,	imposing	a	performance	penalty.	This	penalty	can	be	alleviated	using	techniques	like	just-in-time	compilation;	but	some	computational	overhead	may	be	unavoidable.	Different	platforms	require	the	use	of	native	package	formats	such	as	RPM	and	MSI.	Multi-platform
installers	such	as	InstallAnywhere	address	this	need.	Cross-platform	execution	environments	may	suffer	cross-platform	security	flaws,	creating	a	fertile	environment	for	cross-platform	malware.[18]	Operating	context	List	of	widget	toolkits	Hardware	virtualization	Language	binding	Source-to-source	compiler	Binary-code	compatibility	Comparison	of
user	features	of	messaging	platforms	^	"Design	Guidelines:	Glossary".	java.sun.com.	Archived	from	the	original	on	2012-02-13.	Retrieved	2011-10-19.	^	"SDD	Technology	blog:	Definition	of	cross	platform".	SDD	Technology.	Retrieved	2020-10-18.	^	Lee	P	Richardson	(2016-02-16).	"Xamarin	vs	Ionic:	A	Mobile,	Cross	Platform,	Shootout".	^	a	b
"Platform	Definition".	The	Linux	Information	Project.	Retrieved	2014-03-27.	^	"About	Mono".	mono-project.com.	Retrieved	2015-12-17.	^	Corti,	Sascha	P.	(October	2011).	"Browser	and	Feature	Detection".	MSDN	Magazine.	Retrieved	28	January	2014.	^	Choudhary,	S.R.	(2014).	"Cross-platform	testing	and	maintenance	of	web	and	mobile
applications".	Companion	Proceedings	of	the	36th	International	Conference	on	Software	Engineering.	pp.	642–645.	doi:10.1145/2591062.2591097.	hdl:1853/53588.	ISBN	9781450327688.	S2CID	1903037.	^	Mehrotra,	Pranob	(2020-12-01).	"Collabora	Office	suite	gets	a	new	layout	for	Android	tablets	and	Chromebooks".	XDA-Developers.	Retrieved
2021-01-15.	Collabora	Office	is	a	popular	open-source	alternative	to	the	Microsoft	Office	suite.	It's	based	on	LibreOffice,	and	it's	available	on	a	variety	of	platforms,	including	Windows,	Linux,	iOS,	and	Android.	This	year	in	July,	a	major	update	for	the	office	suite	brought	support	for	Chrome	OS	devices.	^	"Collabora	Office	on	iOS	and	Android	Just	got
Better!".	Adfinis.	2020-12-15.	Retrieved	2021-01-15.	...touch	optimized	interfaces:	one	for	tablets	and	one	for	phone	screens.	...(iOS,	iPadOS,	Chromebooks,	Android).	^	"Nextcloud	Ubuntu	Appliance	adds	Collabora	Online	to	Raspberry	Pi	image".	MuyLinux.	2021-03-26.	Retrieved	2021-03-30.	the	first	viable	self-hosted	web	office	solution	for	the
popular	Raspberry	Pi	4	platform	^	Cribba.	Quake	III	Arena,	Giant	Bombcast,	February	15,	2013.	^	A	Closer	Look	At	The	Dreamcast	Internet	Starter	Kit	^	The	GUI	Toolkit,	Framework	Page	^	"Platform	Independent	FAQ".	Archived	from	the	original	on	2008-08-16.	Retrieved	2009-04-25.	^	"Cross-Platform	SDK	Libraries	for	Recognition,	Document,
Medical,	Imaging,	and	Multimedia".	www.leadtools.com.	Retrieved	2021-03-03.	^	"12	benefits	of	Xamarin	Cross-platform	app	development".	HeadWorks.	15	Mar	2019.	^	WxWidgets	Description	^	Warren,	Tom	(2020-01-14).	"Microsoft	bids	farewell	to	Windows	7	and	the	millions	of	PCs	that	still	run	it".	The	Verge.	Retrieved	2020-02-06.	Retrieved
from	"

